Backstepping- and Sliding Mode-Based Automatic Carrier Landing System with Deck Motion Estimation and Compensation

This paper addresses the automatic carrier landing problem in the presence of deck motion, carrier airwake disturbance, wind shears, wind gusts, and atmospheric turbulences. By transforming the 6-DOF aircraft model into an affine dynamic with angle of attack controlled by thrust, the equations assoc...

Full description

Bibliographic Details
Main Authors: Mihai Lungu, Mou Chen, Dana-Aurelia Vîlcică (Dinu)
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Aerospace
Subjects:
Online Access:https://www.mdpi.com/2226-4310/9/11/644
Description
Summary:This paper addresses the automatic carrier landing problem in the presence of deck motion, carrier airwake disturbance, wind shears, wind gusts, and atmospheric turbulences. By transforming the 6-DOF aircraft model into an affine dynamic with angle of attack controlled by thrust, the equations associated to the resultant disturbances are deduced; then, a deck motion prediction block (based on a recursive-least squares algorithm) and a tracking differentiator-based deck motion compensation block are designed. After obtaining the aircraft reference trajectory, the backstepping control method is employed to design a novel automatic carrier landing system with three functional parts: a guidance control system, an attitude control system, and an approach power compensation system. The design of the attitude subsystem involves the flight path control, the control of the attitude angles, and the control of the angular rates. To obtain convergence performance for the closed-loop system, the backstepping technique is combined with sliding mode-based command differentiators for the computation of the virtual commands and extended state observers for the estimation of the disturbances. The global stability of the closed-loop architecture is analyzed by using the Lyapunov theory. Finally, simulation results verify the effectiveness of the proposed carrier landing system, the aircraft reference trajectory being accurately tracked.
ISSN:2226-4310