Pulmonary arterial remodelling by deficiency of peroxisome proliferator-activated receptor-γ in murine vascular smooth muscle cells occurs independently of obesity-related pulmonary hypertension

Abstract Background Obesity is associated with cardiovascular complications, including pulmonary hypertension (PH). Reports suggest that peroxisome proliferator-activated receptor-γ (PPARγ) has direct action in preventing vascular remodelling in PH. Here we dissected the specific role of high-fat-di...

Full description

Bibliographic Details
Main Authors: Evren Caglayan, Manuela Trappiel, Arnica Behringer, Eva Maria Berghausen, Margarete Odenthal, Ernst Wellnhofer, Kai Kappert
Format: Article
Language:English
Published: BMC 2019-02-01
Series:Respiratory Research
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12931-019-1003-4
Description
Summary:Abstract Background Obesity is associated with cardiovascular complications, including pulmonary hypertension (PH). Reports suggest that peroxisome proliferator-activated receptor-γ (PPARγ) has direct action in preventing vascular remodelling in PH. Here we dissected the specific role of high-fat-diet (HFD)-induced obesity and vascular smooth muscle cell (VSMC)-PPARγ for remodelling of small pulmonary arteries. Methods Wild-type (WT) and VSMC-specific PPARγ-knockout (SmPparγ −/−) mice were fed a low-fat-diet (LFD, 10% kcal from fat) or HFD (60% kcal from fat) for 24 weeks. Mice were metabolically phenotyped (e.g. weight development, insulin/glucose tolerance) at the beginning, and after 12 and 24 weeks, respectively. At 24 weeks additionally pulmonary pressure, heart structure, pulmonary vascular muscularization together with gene and protein expression in heart and lung tissues were determined. Results HFD increased right ventricular systolic pressure (RVSP) to a similar extent in WT and SmPparγ −/− mice. HFD decreased glucose tolerance and insulin sensitivity in both WT and SmPparγ −/− mice. Importantly, the increase in RVSP correlated with the degree of insulin resistance. However, VSMC-PPARγ deficiency increased pulmonary vascular muscularization independently of the diet-induced rise in RVSP. This increase was associated with elevated expression of early growth response protein 1 in heart and osteopontin in lung tissue. Conclusions Here we demonstrate a correlation of insulin resistance and pulmonary pressure. Further, deficiency of PPARγ in VSMCs diet-independently leads to increased pulmonary vascular muscularization.
ISSN:1465-993X