Scanning Three-Dimensional X-ray Diffraction Microscopy for Carbon Steels

Plastically deformed low-carbon steel has been analyzed by nondestructive three-dimensional orientation and strain mapping using scanning three-dimensional X-ray diffraction microscopy (S3DXRD). However, the application of S3DXRD is limited to single-phase alloys. In this study, we propose a modifie...

Full description

Bibliographic Details
Main Authors: Yujiro Hayashi, Hidehiko Kimura
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Quantum Beam Science
Subjects:
Online Access:https://www.mdpi.com/2412-382X/7/3/23
Description
Summary:Plastically deformed low-carbon steel has been analyzed by nondestructive three-dimensional orientation and strain mapping using scanning three-dimensional X-ray diffraction microscopy (S3DXRD). However, the application of S3DXRD is limited to single-phase alloys. In this study, we propose a modified S3DXRD analysis for dual-phase alloys, such as ferrite–pearlite carbon steel, which is composed of grains detectable as diffraction spots and a phase undetectable as diffraction spots. We performed validation experiments for ferrite–pearlite carbon steel with different pearlite fractions, in which the ferrite grains and the pearlite corresponded to the detectable grains and an undetectable phase, respectively. The regions of pearlite appeared more remarkably in orientation maps of the ferrite grains obtained from the carbon steel samples than that of the single-phase low-carbon steel and increased with the increase in the carbon concentration. The fractions of the detectable grains and the undetectable phase were determined with an uncertainty of 15%–20%. These results indicate that the proposed modified analysis is qualitatively valid for dual-phase alloys comprising detectable grains and an undetectable phase.
ISSN:2412-382X