Gauge invariant target space entanglement in D-brane holography

Abstract It has been suggested in arXiv:2004.00613 that in Dp-brane holography, entanglement in the target space of the D-brane Yang-Mills theory provides a precise notion of bulk entanglement in the gravity dual. We expand on this discussion by providing a gauge invariant characterization of operat...

Full description

Bibliographic Details
Main Authors: Sumit R. Das, Anurag Kaushal, Sinong Liu, Gautam Mandal, Sandip P. Trivedi
Format: Article
Language:English
Published: SpringerOpen 2021-04-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP04(2021)225
Description
Summary:Abstract It has been suggested in arXiv:2004.00613 that in Dp-brane holography, entanglement in the target space of the D-brane Yang-Mills theory provides a precise notion of bulk entanglement in the gravity dual. We expand on this discussion by providing a gauge invariant characterization of operator sub-algebras corresponding to such entanglement. This is achieved by finding a projection operator which imposes a constraint characterizing the target space region of interest. By considering probe branes in the Coloumb branch we provide motivation for why the operator sub-algebras we consider are appropriate for describing a class of measurements carried out with low-energy probes in the corresponding bulk region of interest. We derive expressions for the corresponding Renyi entropies in terms of path integrals which can be directly used in numerical calculations.
ISSN:1029-8479