Real Valued Functions for the BFKL Eigenvalue
We consider known expressions for the eigenvalue of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mn&g...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-11-01
|
Series: | Universe |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-1997/7/11/444 |
Summary: | We consider known expressions for the eigenvalue of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> super Yang-Mills theory as a real valued function of two variables. We define new real valued functions of two complex conjugate variables that have a definite complexity analogous to the weight of the nested harmonic sums. We argue that those functions span a general space of functions for the BFKL eigenvalue at any order of the perturbation theory. |
---|---|
ISSN: | 2218-1997 |