Combination of YOLOv3 Algorithm and Blob Detection Technique in Calculating Nile Tilapia Seeds
Baby Fish counting must be counted accurately so it will not cause any loss, especially for fish seeds or fingerlings that have a small size. Generally, people still use conventional counting methods that produce low accuracy values. This research will make a Nila Baby Fish fingerlings counter progr...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Fakultas Ilmu Komputer UMI
2023-08-01
|
Series: | Ilkom Jurnal Ilmiah |
Subjects: | |
Online Access: | https://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/1634 |
Summary: | Baby Fish counting must be counted accurately so it will not cause any loss, especially for fish seeds or fingerlings that have a small size. Generally, people still use conventional counting methods that produce low accuracy values. This research will make a Nila Baby Fish fingerlings counter program using the YOLOv3 algorithm and Blobb detection technique. The annotation data process will use LabelImg, and the dataset training will use Google COLABoratory with the Darknet framework in an online environment. Images that will predict in this program will be called and detected with an object detector. The object with a confidence score of more than 0.3 will be converted into a blob. The blob value will be forwarded to the output layer for scaling the bounding box objects. The output of this program is the predicted image, blob value, prediction time, and the number of Nila seeds. The model performance is evaluated using a confusion matrix and got a 98.87% for accuracy score. |
---|---|
ISSN: | 2087-1716 2548-7779 |