Frequency-Based Haze and Rain Removal Network (FHRR-Net) with Deep Convolutional Encoder-Decoder

Removing haze or rain is one of the difficult problems in computer vision applications. On real-world road images, haze and rain often occur together, but traditional methods cannot solve this imaging problem. To address rain and haze problems simultaneously, we present a robust network-based framew...

Full description

Bibliographic Details
Main Authors: Dong Hwan Kim, Woo Jin Ahn, Myo Taeg Lim, Tae Koo Kang, Dong Won Kim
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/6/2873
Description
Summary:Removing haze or rain is one of the difficult problems in computer vision applications. On real-world road images, haze and rain often occur together, but traditional methods cannot solve this imaging problem. To address rain and haze problems simultaneously, we present a robust network-based framework consisting of three steps: image decomposition using guided filters, a frequency-based haze and rain removal network (FHRR-Net), and image restoration based on an atmospheric scattering model using predicted transmission maps and predicted rain-removed images. We demonstrate FHRR-Net’s capabilities with synthesized and real-world road images. Experimental results show that our trained framework has superior performance on synthesized and real-world road test images compared with state-of-the-art methods. We use PSNR (peak signal-to-noise) and SSIM (structural similarity index) indicators to evaluate our model quantitatively, showing that our methods have the highest PSNR and SSIM values. Furthermore, we demonstrate through experiments that our method is useful in real-world vision applications.
ISSN:2076-3417