GNSS Based Low-Cost Magnetometer Calibration
With the development of MEMS sensors, the magnetometer has increasingly become a part of various wearable devices. The magnetometer measures the intensity of the magnetic field in all three axes, resulting in a 3D vector—direction and power. Calibration must be done before using a magnetometer, espe...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-11-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/22/21/8447 |
_version_ | 1797466474680418304 |
---|---|
author | Ján Andel Vojtech Šimák Alžbeta Kanálikova Rastislav Pirník |
author_facet | Ján Andel Vojtech Šimák Alžbeta Kanálikova Rastislav Pirník |
author_sort | Ján Andel |
collection | DOAJ |
description | With the development of MEMS sensors, the magnetometer has increasingly become a part of various wearable devices. The magnetometer measures the intensity of the magnetic field in all three axes, resulting in a 3D vector—direction and power. Calibration must be done before using a magnetometer, especially in wearable electronics, due to the low quality of the sensor and high proximity to other electromagnetic emission sources. Several magnetometer calibration algorithms exist in the literature, with most of them requiring multi-sided rotation. However, such calibration is highly impractical when the sensor is mounted on larger objects, e.g., vehicles, which cannot easily be rotated. Vehicles contain a large amount of ferromagnetic soft and hard material that affects the measured magnetic field. A magnetometer can be useful for an INS system in a car as long as it does not drift over time. This article describes how to calibrate a magnetometer using the GNSS motion vector. The calibration is performed using data from the initial section of the vehicle’s trajectory. The quality of the calibration is then validated using the remaining section of the trajectory, comparing the deviation between the azimuth obtained by GNSS and by the calibrated magnetometer. Based on the azimuth and speed of the vehicle, we predicted the position of the vehicle and plotted the prediction on the map. The experiment showed that such calibration is functional. The uncalibrated data were unusable due to the strong effect of ferromagnetic soft and hard materials in the vehicle. |
first_indexed | 2024-03-09T18:40:23Z |
format | Article |
id | doaj.art-b7ec5537afae4e6faf558a20df9d4109 |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-09T18:40:23Z |
publishDate | 2022-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-b7ec5537afae4e6faf558a20df9d41092023-11-24T06:48:13ZengMDPI AGSensors1424-82202022-11-012221844710.3390/s22218447GNSS Based Low-Cost Magnetometer CalibrationJán Andel0Vojtech Šimák1Alžbeta Kanálikova2Rastislav Pirník3Department of Control and Information Systems, Faculty of Electrical Engineering and Information Technology, University of Žilina, 010 26 Žilina, SlovakiaDepartment of Control and Information Systems, Faculty of Electrical Engineering and Information Technology, University of Žilina, 010 26 Žilina, SlovakiaDepartment of Control and Information Systems, Faculty of Electrical Engineering and Information Technology, University of Žilina, 010 26 Žilina, SlovakiaDepartment of Control and Information Systems, Faculty of Electrical Engineering and Information Technology, University of Žilina, 010 26 Žilina, SlovakiaWith the development of MEMS sensors, the magnetometer has increasingly become a part of various wearable devices. The magnetometer measures the intensity of the magnetic field in all three axes, resulting in a 3D vector—direction and power. Calibration must be done before using a magnetometer, especially in wearable electronics, due to the low quality of the sensor and high proximity to other electromagnetic emission sources. Several magnetometer calibration algorithms exist in the literature, with most of them requiring multi-sided rotation. However, such calibration is highly impractical when the sensor is mounted on larger objects, e.g., vehicles, which cannot easily be rotated. Vehicles contain a large amount of ferromagnetic soft and hard material that affects the measured magnetic field. A magnetometer can be useful for an INS system in a car as long as it does not drift over time. This article describes how to calibrate a magnetometer using the GNSS motion vector. The calibration is performed using data from the initial section of the vehicle’s trajectory. The quality of the calibration is then validated using the remaining section of the trajectory, comparing the deviation between the azimuth obtained by GNSS and by the calibrated magnetometer. Based on the azimuth and speed of the vehicle, we predicted the position of the vehicle and plotted the prediction on the map. The experiment showed that such calibration is functional. The uncalibrated data were unusable due to the strong effect of ferromagnetic soft and hard materials in the vehicle.https://www.mdpi.com/1424-8220/22/21/8447magnetometerdata acquisition unitcalibrationGNSS |
spellingShingle | Ján Andel Vojtech Šimák Alžbeta Kanálikova Rastislav Pirník GNSS Based Low-Cost Magnetometer Calibration Sensors magnetometer data acquisition unit calibration GNSS |
title | GNSS Based Low-Cost Magnetometer Calibration |
title_full | GNSS Based Low-Cost Magnetometer Calibration |
title_fullStr | GNSS Based Low-Cost Magnetometer Calibration |
title_full_unstemmed | GNSS Based Low-Cost Magnetometer Calibration |
title_short | GNSS Based Low-Cost Magnetometer Calibration |
title_sort | gnss based low cost magnetometer calibration |
topic | magnetometer data acquisition unit calibration GNSS |
url | https://www.mdpi.com/1424-8220/22/21/8447 |
work_keys_str_mv | AT janandel gnssbasedlowcostmagnetometercalibration AT vojtechsimak gnssbasedlowcostmagnetometercalibration AT alzbetakanalikova gnssbasedlowcostmagnetometercalibration AT rastislavpirnik gnssbasedlowcostmagnetometercalibration |