Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise.
Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0119382 |
_version_ | 1818725455470002176 |
---|---|
author | Elliott M McMillan Marie-France Paré Brittany L Baechler Drew A Graham James W E Rush Joe Quadrilatero |
author_facet | Elliott M McMillan Marie-France Paré Brittany L Baechler Drew A Graham James W E Rush Joe Quadrilatero |
author_sort | Elliott M McMillan |
collection | DOAJ |
description | Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG) of hypertensive rats had higher (p<0.05) caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05) ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05) Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05) Beclin-1 and ATG7 protein, as well as decreased (p<0.05) caspase-3, calpain, and cathepsin activity. Left ventricle (LV) of hypertensive rats had reduced (p<0.05) AMPKα and LC3II protein, as well as elevated (p<0.05) p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05) proteasome activity but reduced (p<0.05) caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats. |
first_indexed | 2024-12-17T21:42:35Z |
format | Article |
id | doaj.art-b7ecce9d1bc74c949a9fb40f24efa9e8 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-17T21:42:35Z |
publishDate | 2015-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-b7ecce9d1bc74c949a9fb40f24efa9e82022-12-21T21:31:34ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01103e011938210.1371/journal.pone.0119382Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise.Elliott M McMillanMarie-France ParéBrittany L BaechlerDrew A GrahamJames W E RushJoe QuadrilateroHypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG) of hypertensive rats had higher (p<0.05) caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05) ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05) Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05) Beclin-1 and ATG7 protein, as well as decreased (p<0.05) caspase-3, calpain, and cathepsin activity. Left ventricle (LV) of hypertensive rats had reduced (p<0.05) AMPKα and LC3II protein, as well as elevated (p<0.05) p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05) proteasome activity but reduced (p<0.05) caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats.https://doi.org/10.1371/journal.pone.0119382 |
spellingShingle | Elliott M McMillan Marie-France Paré Brittany L Baechler Drew A Graham James W E Rush Joe Quadrilatero Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise. PLoS ONE |
title | Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise. |
title_full | Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise. |
title_fullStr | Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise. |
title_full_unstemmed | Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise. |
title_short | Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise. |
title_sort | autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise |
url | https://doi.org/10.1371/journal.pone.0119382 |
work_keys_str_mv | AT elliottmmcmillan autophagicsignalingandproteolyticenzymeactivityincardiacandskeletalmuscleofspontaneouslyhypertensiveratsfollowingchronicaerobicexercise AT mariefrancepare autophagicsignalingandproteolyticenzymeactivityincardiacandskeletalmuscleofspontaneouslyhypertensiveratsfollowingchronicaerobicexercise AT brittanylbaechler autophagicsignalingandproteolyticenzymeactivityincardiacandskeletalmuscleofspontaneouslyhypertensiveratsfollowingchronicaerobicexercise AT drewagraham autophagicsignalingandproteolyticenzymeactivityincardiacandskeletalmuscleofspontaneouslyhypertensiveratsfollowingchronicaerobicexercise AT jameswerush autophagicsignalingandproteolyticenzymeactivityincardiacandskeletalmuscleofspontaneouslyhypertensiveratsfollowingchronicaerobicexercise AT joequadrilatero autophagicsignalingandproteolyticenzymeactivityincardiacandskeletalmuscleofspontaneouslyhypertensiveratsfollowingchronicaerobicexercise |