EEG Channel Selection Based User Identification via Improved Flower Pollination Algorithm

The electroencephalogram (EEG) introduced a massive potential for user identification. Several studies have shown that EEG provides unique features in addition to typical strength for spoofing attacks. EEG provides a graphic recording of the brain’s electrical activity that electrodes can capture on...

Full description

Bibliographic Details
Main Authors: Zaid Abdi Alkareem Alyasseri, Osama Ahmad Alomari, João P. Papa, Mohammed Azmi Al-Betar, Karrar Hameed Abdulkareem, Mazin Abed Mohammed, Seifedine Kadry, Orawit Thinnukool, Pattaraporn Khuwuthyakorn
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/6/2092
_version_ 1827625760047759360
author Zaid Abdi Alkareem Alyasseri
Osama Ahmad Alomari
João P. Papa
Mohammed Azmi Al-Betar
Karrar Hameed Abdulkareem
Mazin Abed Mohammed
Seifedine Kadry
Orawit Thinnukool
Pattaraporn Khuwuthyakorn
author_facet Zaid Abdi Alkareem Alyasseri
Osama Ahmad Alomari
João P. Papa
Mohammed Azmi Al-Betar
Karrar Hameed Abdulkareem
Mazin Abed Mohammed
Seifedine Kadry
Orawit Thinnukool
Pattaraporn Khuwuthyakorn
author_sort Zaid Abdi Alkareem Alyasseri
collection DOAJ
description The electroencephalogram (EEG) introduced a massive potential for user identification. Several studies have shown that EEG provides unique features in addition to typical strength for spoofing attacks. EEG provides a graphic recording of the brain’s electrical activity that electrodes can capture on the scalp at different places. However, selecting which electrodes should be used is a challenging task. Such a subject is formulated as an electrode selection task that is tackled by optimization methods. In this work, a new approach to select the most representative electrodes is introduced. The proposed algorithm is a hybrid version of the Flower Pollination Algorithm and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-Hill Climbing optimizer called FPA<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-hc. The performance of the FPA<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-hc algorithm is evaluated using a standard EEG motor imagery dataset. The experimental results show that the FPA<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-hc can utilize less than half of the electrode numbers, achieving more accurate results than seven other methods.
first_indexed 2024-03-09T12:43:09Z
format Article
id doaj.art-b7f05b6c681d430a8a3793a016a59938
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-09T12:43:09Z
publishDate 2022-03-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-b7f05b6c681d430a8a3793a016a599382023-11-30T22:16:07ZengMDPI AGSensors1424-82202022-03-01226209210.3390/s22062092EEG Channel Selection Based User Identification via Improved Flower Pollination AlgorithmZaid Abdi Alkareem Alyasseri0Osama Ahmad Alomari1João P. Papa2Mohammed Azmi Al-Betar3Karrar Hameed Abdulkareem4Mazin Abed Mohammed5Seifedine Kadry6Orawit Thinnukool7Pattaraporn Khuwuthyakorn8ECE Department, Faculty of Engineering, University of Kufa, Najaf 54001, IraqMLALP Research Group, University of Sharjah, Sharjah P.O. Box 27272, United Arab EmiratesDepartment of Computing, UNESP—São Paulo State University, Bauru 19060-560, BrazilArtificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman P.O. Box 20550, United Arab EmiratesCollege of Agriculture, Al-Muthanna University, Samawah 66001, IraqCollege of Computer Science and Information Technology, University of Anbar, Ramadi 31001, IraqDepartment of Applied Data Science, Norrof University College, 4608 Kristiansand, NorwayCollege of Arts, Media, and Technology, Chiang Mai University, Chiang Mai 50200, ThailandCollege of Arts, Media, and Technology, Chiang Mai University, Chiang Mai 50200, ThailandThe electroencephalogram (EEG) introduced a massive potential for user identification. Several studies have shown that EEG provides unique features in addition to typical strength for spoofing attacks. EEG provides a graphic recording of the brain’s electrical activity that electrodes can capture on the scalp at different places. However, selecting which electrodes should be used is a challenging task. Such a subject is formulated as an electrode selection task that is tackled by optimization methods. In this work, a new approach to select the most representative electrodes is introduced. The proposed algorithm is a hybrid version of the Flower Pollination Algorithm and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-Hill Climbing optimizer called FPA<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-hc. The performance of the FPA<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-hc algorithm is evaluated using a standard EEG motor imagery dataset. The experimental results show that the FPA<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-hc can utilize less than half of the electrode numbers, achieving more accurate results than seven other methods.https://www.mdpi.com/1424-8220/22/6/2092EEGbiometric<i>β</i>-hill climbingflower pollination algorithmfeature selectionauto-repressive
spellingShingle Zaid Abdi Alkareem Alyasseri
Osama Ahmad Alomari
João P. Papa
Mohammed Azmi Al-Betar
Karrar Hameed Abdulkareem
Mazin Abed Mohammed
Seifedine Kadry
Orawit Thinnukool
Pattaraporn Khuwuthyakorn
EEG Channel Selection Based User Identification via Improved Flower Pollination Algorithm
Sensors
EEG
biometric
<i>β</i>-hill climbing
flower pollination algorithm
feature selection
auto-repressive
title EEG Channel Selection Based User Identification via Improved Flower Pollination Algorithm
title_full EEG Channel Selection Based User Identification via Improved Flower Pollination Algorithm
title_fullStr EEG Channel Selection Based User Identification via Improved Flower Pollination Algorithm
title_full_unstemmed EEG Channel Selection Based User Identification via Improved Flower Pollination Algorithm
title_short EEG Channel Selection Based User Identification via Improved Flower Pollination Algorithm
title_sort eeg channel selection based user identification via improved flower pollination algorithm
topic EEG
biometric
<i>β</i>-hill climbing
flower pollination algorithm
feature selection
auto-repressive
url https://www.mdpi.com/1424-8220/22/6/2092
work_keys_str_mv AT zaidabdialkareemalyasseri eegchannelselectionbaseduseridentificationviaimprovedflowerpollinationalgorithm
AT osamaahmadalomari eegchannelselectionbaseduseridentificationviaimprovedflowerpollinationalgorithm
AT joaoppapa eegchannelselectionbaseduseridentificationviaimprovedflowerpollinationalgorithm
AT mohammedazmialbetar eegchannelselectionbaseduseridentificationviaimprovedflowerpollinationalgorithm
AT karrarhameedabdulkareem eegchannelselectionbaseduseridentificationviaimprovedflowerpollinationalgorithm
AT mazinabedmohammed eegchannelselectionbaseduseridentificationviaimprovedflowerpollinationalgorithm
AT seifedinekadry eegchannelselectionbaseduseridentificationviaimprovedflowerpollinationalgorithm
AT orawitthinnukool eegchannelselectionbaseduseridentificationviaimprovedflowerpollinationalgorithm
AT pattarapornkhuwuthyakorn eegchannelselectionbaseduseridentificationviaimprovedflowerpollinationalgorithm