Conic bundles that are not birational to numerical Calabi--Yau pairs

Let $X$ be a general conic bundle over the projective plane with branch curve of degree at least 19. We prove that there is no normal projective variety $Y$ that is birational to $X$ and such that some multiple of its anticanonical divisor is effective. We also give such examples for 2-dimensional c...

Повний опис

Бібліографічні деталі
Автор: János Kollár
Формат: Стаття
Мова:English
Опубліковано: Association Epiga 2017-09-01
Серія:Épijournal de Géométrie Algébrique
Предмети:
Онлайн доступ:https://epiga.episciences.org/1518/pdf