The Development of New Perovskite-Type Oxygen Transport Membranes Using Machine Learning

The aim of this work is to predict suitable chemical compositions for the development of new ceramic oxygen gas separation membranes, avoiding doping with toxic cobalt or expensive rare earths. For this purpose, we have chosen the system Sr<sub>1−x</sub>Ba<sub>x</sub>(Ti<s...

Full description

Bibliographic Details
Main Authors: Hartmut Schlenz, Stefan Baumann, Wilhelm Albert Meulenberg, Olivier Guillon
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/12/7/947
_version_ 1797440153161039872
author Hartmut Schlenz
Stefan Baumann
Wilhelm Albert Meulenberg
Olivier Guillon
author_facet Hartmut Schlenz
Stefan Baumann
Wilhelm Albert Meulenberg
Olivier Guillon
author_sort Hartmut Schlenz
collection DOAJ
description The aim of this work is to predict suitable chemical compositions for the development of new ceramic oxygen gas separation membranes, avoiding doping with toxic cobalt or expensive rare earths. For this purpose, we have chosen the system Sr<sub>1−x</sub>Ba<sub>x</sub>(Ti<sub>1−y−z</sub>V<sub>y</sub>Fe<sub>z</sub>)O<sub>3−<i>δ</i></sub> (cubic perovskite-type phases). We have evaluated available experimental data, determined missing crystallographic information using bond-valence modeling and programmed a Python code to be able to generate training data sets for property predictions using machine learning. Indeed, suitable compositions of cubic perovskite-type phases can be predicted in this way, allowing for larger electronic conductivities of up to σ<sub><i>e</i></sub> = 1.6 S/cm and oxygen conductivities of up to σ<sub><i>i</i></sub> = 0.008 S/cm at <i>T</i> = 1173 K and an oxygen partial pressure <i>p<sub>O<sub>2</sub></sub></i> = 10<sup>−15</sup> bar, thus enabling practical applications.
first_indexed 2024-03-09T12:03:00Z
format Article
id doaj.art-b7f5effb4e75487581ed6b2938eb3ef4
institution Directory Open Access Journal
issn 2073-4352
language English
last_indexed 2024-03-09T12:03:00Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Crystals
spelling doaj.art-b7f5effb4e75487581ed6b2938eb3ef42023-11-30T23:01:19ZengMDPI AGCrystals2073-43522022-07-0112794710.3390/cryst12070947The Development of New Perovskite-Type Oxygen Transport Membranes Using Machine LearningHartmut Schlenz0Stefan Baumann1Wilhelm Albert Meulenberg2Olivier Guillon3Forschungszentrum Juelich, Institute of Energy and Climate Research (IEK), IEK-1: Materials Synthesis and Processing, Wilhelm-Johnen-Strasse, D-52425 Juelich, GermanyForschungszentrum Juelich, Institute of Energy and Climate Research (IEK), IEK-1: Materials Synthesis and Processing, Wilhelm-Johnen-Strasse, D-52425 Juelich, GermanyForschungszentrum Juelich, Institute of Energy and Climate Research (IEK), IEK-1: Materials Synthesis and Processing, Wilhelm-Johnen-Strasse, D-52425 Juelich, GermanyForschungszentrum Juelich, Institute of Energy and Climate Research (IEK), IEK-1: Materials Synthesis and Processing, Wilhelm-Johnen-Strasse, D-52425 Juelich, GermanyThe aim of this work is to predict suitable chemical compositions for the development of new ceramic oxygen gas separation membranes, avoiding doping with toxic cobalt or expensive rare earths. For this purpose, we have chosen the system Sr<sub>1−x</sub>Ba<sub>x</sub>(Ti<sub>1−y−z</sub>V<sub>y</sub>Fe<sub>z</sub>)O<sub>3−<i>δ</i></sub> (cubic perovskite-type phases). We have evaluated available experimental data, determined missing crystallographic information using bond-valence modeling and programmed a Python code to be able to generate training data sets for property predictions using machine learning. Indeed, suitable compositions of cubic perovskite-type phases can be predicted in this way, allowing for larger electronic conductivities of up to σ<sub><i>e</i></sub> = 1.6 S/cm and oxygen conductivities of up to σ<sub><i>i</i></sub> = 0.008 S/cm at <i>T</i> = 1173 K and an oxygen partial pressure <i>p<sub>O<sub>2</sub></sub></i> = 10<sup>−15</sup> bar, thus enabling practical applications.https://www.mdpi.com/2073-4352/12/7/947ceramicperovskiteoxygen separation membranemixed ionic-electronic conducting membrane MIECvalence bond calculationsmachine learning
spellingShingle Hartmut Schlenz
Stefan Baumann
Wilhelm Albert Meulenberg
Olivier Guillon
The Development of New Perovskite-Type Oxygen Transport Membranes Using Machine Learning
Crystals
ceramic
perovskite
oxygen separation membrane
mixed ionic-electronic conducting membrane MIEC
valence bond calculations
machine learning
title The Development of New Perovskite-Type Oxygen Transport Membranes Using Machine Learning
title_full The Development of New Perovskite-Type Oxygen Transport Membranes Using Machine Learning
title_fullStr The Development of New Perovskite-Type Oxygen Transport Membranes Using Machine Learning
title_full_unstemmed The Development of New Perovskite-Type Oxygen Transport Membranes Using Machine Learning
title_short The Development of New Perovskite-Type Oxygen Transport Membranes Using Machine Learning
title_sort development of new perovskite type oxygen transport membranes using machine learning
topic ceramic
perovskite
oxygen separation membrane
mixed ionic-electronic conducting membrane MIEC
valence bond calculations
machine learning
url https://www.mdpi.com/2073-4352/12/7/947
work_keys_str_mv AT hartmutschlenz thedevelopmentofnewperovskitetypeoxygentransportmembranesusingmachinelearning
AT stefanbaumann thedevelopmentofnewperovskitetypeoxygentransportmembranesusingmachinelearning
AT wilhelmalbertmeulenberg thedevelopmentofnewperovskitetypeoxygentransportmembranesusingmachinelearning
AT olivierguillon thedevelopmentofnewperovskitetypeoxygentransportmembranesusingmachinelearning
AT hartmutschlenz developmentofnewperovskitetypeoxygentransportmembranesusingmachinelearning
AT stefanbaumann developmentofnewperovskitetypeoxygentransportmembranesusingmachinelearning
AT wilhelmalbertmeulenberg developmentofnewperovskitetypeoxygentransportmembranesusingmachinelearning
AT olivierguillon developmentofnewperovskitetypeoxygentransportmembranesusingmachinelearning