High-Precision Cavity Length Demodulation Method for Fiber-Optic Fabry–Perot Sensors Based on Dual Superluminescent Diodes
A high-precision cross-correlation cavity length demodulation method for fiber-optic Fabry–Perot (F–P) sensors based on two different wavelength superluminescent diodes (SLDs) was proposed. This method can solve the problem of low demodulation accuracy caused by the difficulty in identifying the max...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-08-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/22/15/5898 |
_version_ | 1827624535952719872 |
---|---|
author | Weiguang Zhang Jia Yu Xiongxing Zhang Haibin Chen Junying Zhang Wei Wang |
author_facet | Weiguang Zhang Jia Yu Xiongxing Zhang Haibin Chen Junying Zhang Wei Wang |
author_sort | Weiguang Zhang |
collection | DOAJ |
description | A high-precision cross-correlation cavity length demodulation method for fiber-optic Fabry–Perot (F–P) sensors based on two different wavelength superluminescent diodes (SLDs) was proposed. This method can solve the problem of low demodulation accuracy caused by the difficulty in identifying the maximum cross-correlation coefficient when the cavity length of the fiber-optic F–P fiber sensor is too short, or when the spectral bandwidth of the illuminating single-light source is too narrow. This demodulation method is based on the principle that the two main peaks of the two cross-correlation curves corresponding to two different spectral ranges should match, and the average value of the two calculated cavity lengths corresponding to the two matched peaks is determined as the real cavity length. The cavity length demodulation of fiber-optic F–P sensors in the range of 20–200 μm shows a maximum measurement deviation of 0.008 μm, which is significantly smaller than the demodulation result obtained with a single light source, and the standard deviation of the measurement results is only approximately 0.0005 μm, indicating the high precision and stability of a dual SLD cross-correlation demodulation method. |
first_indexed | 2024-03-09T12:11:02Z |
format | Article |
id | doaj.art-b7fc44b6c7684c91a8fa94627604b4e1 |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-09T12:11:02Z |
publishDate | 2022-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-b7fc44b6c7684c91a8fa94627604b4e12023-11-30T22:52:34ZengMDPI AGSensors1424-82202022-08-012215589810.3390/s22155898High-Precision Cavity Length Demodulation Method for Fiber-Optic Fabry–Perot Sensors Based on Dual Superluminescent DiodesWeiguang Zhang0Jia Yu1Xiongxing Zhang2Haibin Chen3Junying Zhang4Wei Wang5School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, ChinaSchool of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, ChinaSchool of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, ChinaSchool of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, ChinaSchool of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, ChinaSchool of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, ChinaA high-precision cross-correlation cavity length demodulation method for fiber-optic Fabry–Perot (F–P) sensors based on two different wavelength superluminescent diodes (SLDs) was proposed. This method can solve the problem of low demodulation accuracy caused by the difficulty in identifying the maximum cross-correlation coefficient when the cavity length of the fiber-optic F–P fiber sensor is too short, or when the spectral bandwidth of the illuminating single-light source is too narrow. This demodulation method is based on the principle that the two main peaks of the two cross-correlation curves corresponding to two different spectral ranges should match, and the average value of the two calculated cavity lengths corresponding to the two matched peaks is determined as the real cavity length. The cavity length demodulation of fiber-optic F–P sensors in the range of 20–200 μm shows a maximum measurement deviation of 0.008 μm, which is significantly smaller than the demodulation result obtained with a single light source, and the standard deviation of the measurement results is only approximately 0.0005 μm, indicating the high precision and stability of a dual SLD cross-correlation demodulation method.https://www.mdpi.com/1424-8220/22/15/5898fiber-optic sensorFabry–Perot cavityinterrogationcorrelation |
spellingShingle | Weiguang Zhang Jia Yu Xiongxing Zhang Haibin Chen Junying Zhang Wei Wang High-Precision Cavity Length Demodulation Method for Fiber-Optic Fabry–Perot Sensors Based on Dual Superluminescent Diodes Sensors fiber-optic sensor Fabry–Perot cavity interrogation correlation |
title | High-Precision Cavity Length Demodulation Method for Fiber-Optic Fabry–Perot Sensors Based on Dual Superluminescent Diodes |
title_full | High-Precision Cavity Length Demodulation Method for Fiber-Optic Fabry–Perot Sensors Based on Dual Superluminescent Diodes |
title_fullStr | High-Precision Cavity Length Demodulation Method for Fiber-Optic Fabry–Perot Sensors Based on Dual Superluminescent Diodes |
title_full_unstemmed | High-Precision Cavity Length Demodulation Method for Fiber-Optic Fabry–Perot Sensors Based on Dual Superluminescent Diodes |
title_short | High-Precision Cavity Length Demodulation Method for Fiber-Optic Fabry–Perot Sensors Based on Dual Superluminescent Diodes |
title_sort | high precision cavity length demodulation method for fiber optic fabry perot sensors based on dual superluminescent diodes |
topic | fiber-optic sensor Fabry–Perot cavity interrogation correlation |
url | https://www.mdpi.com/1424-8220/22/15/5898 |
work_keys_str_mv | AT weiguangzhang highprecisioncavitylengthdemodulationmethodforfiberopticfabryperotsensorsbasedondualsuperluminescentdiodes AT jiayu highprecisioncavitylengthdemodulationmethodforfiberopticfabryperotsensorsbasedondualsuperluminescentdiodes AT xiongxingzhang highprecisioncavitylengthdemodulationmethodforfiberopticfabryperotsensorsbasedondualsuperluminescentdiodes AT haibinchen highprecisioncavitylengthdemodulationmethodforfiberopticfabryperotsensorsbasedondualsuperluminescentdiodes AT junyingzhang highprecisioncavitylengthdemodulationmethodforfiberopticfabryperotsensorsbasedondualsuperluminescentdiodes AT weiwang highprecisioncavitylengthdemodulationmethodforfiberopticfabryperotsensorsbasedondualsuperluminescentdiodes |