Measuring case severity: a novel tool for benchmarking and clinical documentation improvement

Abstract Background Severity of illness (SOI) is an All Patients Refined Diagnosis Related Groups (APR DRG) modifier based on comorbidity capture. Tracking SOI helps hospitals improve performance and resource distribution. Furthermore, benchmarking SOI plays a key role in Quality Improvement (QI) ef...

Full description

Bibliographic Details
Main Authors: Jie Xiang, Paul W. Durance, Louisa C. Griffes, Yalei Chen, Rishi R. Bakshi
Format: Article
Language:English
Published: BMC 2022-04-01
Series:BMC Health Services Research
Subjects:
Online Access:https://doi.org/10.1186/s12913-022-07935-1
_version_ 1818274496883195904
author Jie Xiang
Paul W. Durance
Louisa C. Griffes
Yalei Chen
Rishi R. Bakshi
author_facet Jie Xiang
Paul W. Durance
Louisa C. Griffes
Yalei Chen
Rishi R. Bakshi
author_sort Jie Xiang
collection DOAJ
description Abstract Background Severity of illness (SOI) is an All Patients Refined Diagnosis Related Groups (APR DRG) modifier based on comorbidity capture. Tracking SOI helps hospitals improve performance and resource distribution. Furthermore, benchmarking SOI plays a key role in Quality Improvement (QI) efforts such as Clinical Documentation Improvement (CDI) programs. The current SOI system highly relies on the 3 M APR DRG grouper that is updated annually, making it difficult to track severity longitudinally and benchmark against hospitals with different patient populations. Here, we describe an alternative SOI scoring system that is grouper-independent and that can be tracked longitudinally. Methods Admission data for 2019–2020 U.S. News and World Report Honor Roll facilities were downloaded from the Vizient Clinical Database and split into training and testing datasets. Elixhauser comorbidities, body systems developed from the Healthcare Cost and Utilization Project (HCUP), and ICD-10-CM complication and comorbidity (CC/MCC) indicators were selected as the predictors for orthogonal polynomial regression models to predict patients’ admission and discharge SOI. Receiver operating characteristic (ROC) and Precision-Recall (PR) analysis, and prediction accuracy were used to evaluate model performance. Results In the training dataset, the full model including both Elixhauser comorbidities and body system CC/MCC indicators had the highest ROC AUC, PR AUC and predication accuracy for both admission (ROC AUC: 92.9%; PR AUC: 91.0%; prediction accuracy: 85.4%) and discharge SOI (ROC AUC: 93.6%; PR AUC: 92.8%; prediction accuracy: 86.2%). The model including only body system CC/MCC indicators had similar performance for admission (ROC AUC: 92.4%; PR AUC: 90.4%; prediction accuracy: 84.8%) and discharge SOI (ROC AUC: 93.1%; PR AUC: 92.2%; prediction accuracy: 85.6%) as the full model. The model including only Elixhauser comorbidities exhibited the lowest performance. Similarly, in the validation dataset, the prediction accuracy was 86.2% for the full model, 85.6% for the body system model, and 79.3% for the comorbidity model. With fewer variables and less model complexity, the body system model was more efficient and was determined to be the optimal model. The probabilities generated from this model, named J_Score and J_Score_POA, successfully measured SOI and had practical applications in assessment of CDI performance. Conclusions The J_Scores generated from the body system model have significant value in evaluating admission and discharge severity of illness. We believe that this new scoring system will provide a useful tool for healthcare institutions to benchmark patients’ illness severity and augment Quality Improvement (QI) efforts.
first_indexed 2024-12-12T22:14:47Z
format Article
id doaj.art-b7fd6a69c7094babb920a40eeb485673
institution Directory Open Access Journal
issn 1472-6963
language English
last_indexed 2024-12-12T22:14:47Z
publishDate 2022-04-01
publisher BMC
record_format Article
series BMC Health Services Research
spelling doaj.art-b7fd6a69c7094babb920a40eeb4856732022-12-22T00:10:06ZengBMCBMC Health Services Research1472-69632022-04-012211910.1186/s12913-022-07935-1Measuring case severity: a novel tool for benchmarking and clinical documentation improvementJie Xiang0Paul W. Durance1Louisa C. Griffes2Yalei Chen3Rishi R. Bakshi4Revenue Cycle Department, Michigan Medicine, University of Michigan HealthFinancial Services Department, Michigan Medicine, University of Michigan HealthQuality Analytics, Quality Department, Michigan Medicine, University of Michigan HealthDepartment of Public Health Sciences, Henry Ford Health SystemDepartments of Physical Medicine & Rehabilitation and Revenue Cycle, Michigan Medicine, University of Michigan HealthAbstract Background Severity of illness (SOI) is an All Patients Refined Diagnosis Related Groups (APR DRG) modifier based on comorbidity capture. Tracking SOI helps hospitals improve performance and resource distribution. Furthermore, benchmarking SOI plays a key role in Quality Improvement (QI) efforts such as Clinical Documentation Improvement (CDI) programs. The current SOI system highly relies on the 3 M APR DRG grouper that is updated annually, making it difficult to track severity longitudinally and benchmark against hospitals with different patient populations. Here, we describe an alternative SOI scoring system that is grouper-independent and that can be tracked longitudinally. Methods Admission data for 2019–2020 U.S. News and World Report Honor Roll facilities were downloaded from the Vizient Clinical Database and split into training and testing datasets. Elixhauser comorbidities, body systems developed from the Healthcare Cost and Utilization Project (HCUP), and ICD-10-CM complication and comorbidity (CC/MCC) indicators were selected as the predictors for orthogonal polynomial regression models to predict patients’ admission and discharge SOI. Receiver operating characteristic (ROC) and Precision-Recall (PR) analysis, and prediction accuracy were used to evaluate model performance. Results In the training dataset, the full model including both Elixhauser comorbidities and body system CC/MCC indicators had the highest ROC AUC, PR AUC and predication accuracy for both admission (ROC AUC: 92.9%; PR AUC: 91.0%; prediction accuracy: 85.4%) and discharge SOI (ROC AUC: 93.6%; PR AUC: 92.8%; prediction accuracy: 86.2%). The model including only body system CC/MCC indicators had similar performance for admission (ROC AUC: 92.4%; PR AUC: 90.4%; prediction accuracy: 84.8%) and discharge SOI (ROC AUC: 93.1%; PR AUC: 92.2%; prediction accuracy: 85.6%) as the full model. The model including only Elixhauser comorbidities exhibited the lowest performance. Similarly, in the validation dataset, the prediction accuracy was 86.2% for the full model, 85.6% for the body system model, and 79.3% for the comorbidity model. With fewer variables and less model complexity, the body system model was more efficient and was determined to be the optimal model. The probabilities generated from this model, named J_Score and J_Score_POA, successfully measured SOI and had practical applications in assessment of CDI performance. Conclusions The J_Scores generated from the body system model have significant value in evaluating admission and discharge severity of illness. We believe that this new scoring system will provide a useful tool for healthcare institutions to benchmark patients’ illness severity and augment Quality Improvement (QI) efforts.https://doi.org/10.1186/s12913-022-07935-1Severity of IllnessAPR DRGBody SystemsElixhauser ComorbiditiesJ ScoresBenchmark
spellingShingle Jie Xiang
Paul W. Durance
Louisa C. Griffes
Yalei Chen
Rishi R. Bakshi
Measuring case severity: a novel tool for benchmarking and clinical documentation improvement
BMC Health Services Research
Severity of Illness
APR DRG
Body Systems
Elixhauser Comorbidities
J Scores
Benchmark
title Measuring case severity: a novel tool for benchmarking and clinical documentation improvement
title_full Measuring case severity: a novel tool for benchmarking and clinical documentation improvement
title_fullStr Measuring case severity: a novel tool for benchmarking and clinical documentation improvement
title_full_unstemmed Measuring case severity: a novel tool for benchmarking and clinical documentation improvement
title_short Measuring case severity: a novel tool for benchmarking and clinical documentation improvement
title_sort measuring case severity a novel tool for benchmarking and clinical documentation improvement
topic Severity of Illness
APR DRG
Body Systems
Elixhauser Comorbidities
J Scores
Benchmark
url https://doi.org/10.1186/s12913-022-07935-1
work_keys_str_mv AT jiexiang measuringcaseseverityanoveltoolforbenchmarkingandclinicaldocumentationimprovement
AT paulwdurance measuringcaseseverityanoveltoolforbenchmarkingandclinicaldocumentationimprovement
AT louisacgriffes measuringcaseseverityanoveltoolforbenchmarkingandclinicaldocumentationimprovement
AT yaleichen measuringcaseseverityanoveltoolforbenchmarkingandclinicaldocumentationimprovement
AT rishirbakshi measuringcaseseverityanoveltoolforbenchmarkingandclinicaldocumentationimprovement