Stability of petal color polymorphism: the significance of anthocyanin accumulation in photosynthetic tissues
Abstract Background Anthocyanins are the primary source of colour in flowers and also accumulate in vegetative tissues, where they have multiple protective roles traditionally attributed to early compounds of the metabolic pathway (flavonols, flavones, etc.). Petal-specific loss of anthocyanins in p...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2019-11-01
|
Series: | BMC Plant Biology |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12870-019-2082-6 |
_version_ | 1818936609919205376 |
---|---|
author | José Carlos Del Valle Cristina Alcalde-Eon Mª. Teresa Escribano-Bailón Mª. Luisa Buide Justen B. Whittall Eduardo Narbona |
author_facet | José Carlos Del Valle Cristina Alcalde-Eon Mª. Teresa Escribano-Bailón Mª. Luisa Buide Justen B. Whittall Eduardo Narbona |
author_sort | José Carlos Del Valle |
collection | DOAJ |
description | Abstract Background Anthocyanins are the primary source of colour in flowers and also accumulate in vegetative tissues, where they have multiple protective roles traditionally attributed to early compounds of the metabolic pathway (flavonols, flavones, etc.). Petal-specific loss of anthocyanins in petals allows plants to escape from the negative pleiotropic effects of flavonoid and anthocyanins loss in vegetative organs, where they perform a plethora of essential functions. Herein, we investigate the degree of pleiotropy at the biochemical scale in a pink-white flower colour polymorphism in the shore campion, Silene littorea. We report the frequencies of pink and white individuals across 21 populations and underlying biochemical profiles of three flower colour variants: anthocyanins present in all tissues (pink petals), petal-specific loss of anthocyanins (white petals), and loss of anthocyanins in all tissues (white petals). Results Individuals lacking anthocyanins only in petals represent a stable polymorphism in two populations at the northern edge of the species range (mean frequency 8–21%). Whereas, individuals lacking anthocyanins in the whole plant were found across the species range, yet always at very low frequencies (< 1%). Biochemically, the flavonoids detected were anthocyanins and flavones; in pigmented individuals, concentrations of flavones were 14–56× higher than anthocyanins across tissues with differences of > 100× detected in leaves. Loss of anthocyanin pigmentation, either in petals or in the whole plant, does not influence the ability of these phenotypes to synthesize flavones, and this pattern was congruent among all sampled populations. Conclusions We found that all colour variants showed similar flavone profiles, either in petals or in the whole plant, and only the flower colour variant with anthocyanins in photosynthetic tissues persists as a stable flower colour polymorphism. These findings suggest that anthocyanins in photosynthetic tissues, not flavonoid intermediates, are the targets of non-pollinator mediated selection. |
first_indexed | 2024-12-20T05:38:48Z |
format | Article |
id | doaj.art-b80049a250ac4a87a8948b7d8d90fc01 |
institution | Directory Open Access Journal |
issn | 1471-2229 |
language | English |
last_indexed | 2024-12-20T05:38:48Z |
publishDate | 2019-11-01 |
publisher | BMC |
record_format | Article |
series | BMC Plant Biology |
spelling | doaj.art-b80049a250ac4a87a8948b7d8d90fc012022-12-21T19:51:32ZengBMCBMC Plant Biology1471-22292019-11-0119111310.1186/s12870-019-2082-6Stability of petal color polymorphism: the significance of anthocyanin accumulation in photosynthetic tissuesJosé Carlos Del Valle0Cristina Alcalde-Eon1Mª. Teresa Escribano-Bailón2Mª. Luisa Buide3Justen B. Whittall4Eduardo Narbona5Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide UniversityGrupo de Investigación en Polifenoles (GIP), University of SalamancaGrupo de Investigación en Polifenoles (GIP), University of SalamancaDepartment of Molecular Biology and Biochemical Engineering, Pablo de Olavide UniversityDepartment of Biology, Santa Clara UniversityDepartment of Molecular Biology and Biochemical Engineering, Pablo de Olavide UniversityAbstract Background Anthocyanins are the primary source of colour in flowers and also accumulate in vegetative tissues, where they have multiple protective roles traditionally attributed to early compounds of the metabolic pathway (flavonols, flavones, etc.). Petal-specific loss of anthocyanins in petals allows plants to escape from the negative pleiotropic effects of flavonoid and anthocyanins loss in vegetative organs, where they perform a plethora of essential functions. Herein, we investigate the degree of pleiotropy at the biochemical scale in a pink-white flower colour polymorphism in the shore campion, Silene littorea. We report the frequencies of pink and white individuals across 21 populations and underlying biochemical profiles of three flower colour variants: anthocyanins present in all tissues (pink petals), petal-specific loss of anthocyanins (white petals), and loss of anthocyanins in all tissues (white petals). Results Individuals lacking anthocyanins only in petals represent a stable polymorphism in two populations at the northern edge of the species range (mean frequency 8–21%). Whereas, individuals lacking anthocyanins in the whole plant were found across the species range, yet always at very low frequencies (< 1%). Biochemically, the flavonoids detected were anthocyanins and flavones; in pigmented individuals, concentrations of flavones were 14–56× higher than anthocyanins across tissues with differences of > 100× detected in leaves. Loss of anthocyanin pigmentation, either in petals or in the whole plant, does not influence the ability of these phenotypes to synthesize flavones, and this pattern was congruent among all sampled populations. Conclusions We found that all colour variants showed similar flavone profiles, either in petals or in the whole plant, and only the flower colour variant with anthocyanins in photosynthetic tissues persists as a stable flower colour polymorphism. These findings suggest that anthocyanins in photosynthetic tissues, not flavonoid intermediates, are the targets of non-pollinator mediated selection.http://link.springer.com/article/10.1186/s12870-019-2082-6AnthocyaninsFlavonoidsFlower color polymorphismLoss of pigmentationNon-pollinator mediated selectionPlant secondary metabolites |
spellingShingle | José Carlos Del Valle Cristina Alcalde-Eon Mª. Teresa Escribano-Bailón Mª. Luisa Buide Justen B. Whittall Eduardo Narbona Stability of petal color polymorphism: the significance of anthocyanin accumulation in photosynthetic tissues BMC Plant Biology Anthocyanins Flavonoids Flower color polymorphism Loss of pigmentation Non-pollinator mediated selection Plant secondary metabolites |
title | Stability of petal color polymorphism: the significance of anthocyanin accumulation in photosynthetic tissues |
title_full | Stability of petal color polymorphism: the significance of anthocyanin accumulation in photosynthetic tissues |
title_fullStr | Stability of petal color polymorphism: the significance of anthocyanin accumulation in photosynthetic tissues |
title_full_unstemmed | Stability of petal color polymorphism: the significance of anthocyanin accumulation in photosynthetic tissues |
title_short | Stability of petal color polymorphism: the significance of anthocyanin accumulation in photosynthetic tissues |
title_sort | stability of petal color polymorphism the significance of anthocyanin accumulation in photosynthetic tissues |
topic | Anthocyanins Flavonoids Flower color polymorphism Loss of pigmentation Non-pollinator mediated selection Plant secondary metabolites |
url | http://link.springer.com/article/10.1186/s12870-019-2082-6 |
work_keys_str_mv | AT josecarlosdelvalle stabilityofpetalcolorpolymorphismthesignificanceofanthocyaninaccumulationinphotosynthetictissues AT cristinaalcaldeeon stabilityofpetalcolorpolymorphismthesignificanceofanthocyaninaccumulationinphotosynthetictissues AT materesaescribanobailon stabilityofpetalcolorpolymorphismthesignificanceofanthocyaninaccumulationinphotosynthetictissues AT maluisabuide stabilityofpetalcolorpolymorphismthesignificanceofanthocyaninaccumulationinphotosynthetictissues AT justenbwhittall stabilityofpetalcolorpolymorphismthesignificanceofanthocyaninaccumulationinphotosynthetictissues AT eduardonarbona stabilityofpetalcolorpolymorphismthesignificanceofanthocyaninaccumulationinphotosynthetictissues |