Solution of nonlinear creep problem for stochastically inhomogeneous plane on the basis of the second approximation for small parameter method

The analytical method for nonlinear stochastic creep problem solving for a plane stressed state was developed. Stochasticity was introduced into the determinative creep equation, which was taken in accordance with the nonlinear theory of viscous flow, through a homogeneous random function of coordina...

Full description

Bibliographic Details
Main Authors: Nikolay N Popov, Olga O Chernova
Format: Article
Language:English
Published: Samara State Technical University 2011-12-01
Series:Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki
Subjects:
Online Access:https://journals.eco-vector.com/1991-8615/article/viewFile/20937/17197
Description
Summary:The analytical method for nonlinear stochastic creep problem solving for a plane stressed state was developed. Stochasticity was introduced into the determinative creep equation, which was taken in accordance with the nonlinear theory of viscous flow, through a homogeneous random function of coordinates. The problem was solved on the basis of the second approximation for small parameter method in stress tensor components. The main statistical characteristics of the random stress field were calculated. The analysis of the results in the first and second approximations was obtained.
ISSN:1991-8615
2310-7081