Методи забезпечення кріогенних температур в установках збагачення неоногелієвої суміші

Концентрати неону, гелію, криптону і ксенону здобувають з атмосфери в якості побічних продуктів при переробці в повітророздільних установках великих обсягів атмосферного повітря. Основними джерелами неону і гелію в Україні є кисневі цехи металургійних і хімічних комплексі. Сира неоногелієва суміш, м...

Full description

Bibliographic Details
Main Authors: В.Л. Бондаренко, Ю.М. Симоненко, Д. П. Тишко, Б.О. Пилипенко
Format: Article
Language:English
Published: Odesa National University of Technology 2018-10-01
Series:Holodilʹnaâ Tehnika i Tehnologiâ
Subjects:
Online Access:http:////journals.onaft.edu.ua/index.php/reftech/article/view/1266
Description
Summary:Концентрати неону, гелію, криптону і ксенону здобувають з атмосфери в якості побічних продуктів при переробці в повітророздільних установках великих обсягів атмосферного повітря. Основними джерелами неону і гелію в Україні є кисневі цехи металургійних і хімічних комплексі. Сира неоногелієва суміш, містить в собі близько 50% побічних домішок, основною з яких є азот. Зниження кількості домішок в продукті особливо важливо в разі значної віддаленості джерела сировини від ділянки його остаточної переробки. Збагачення неоногелієвої суміші дозволяє знизити транспортні витрати та спростити глибоку адсорбційну очистку, що практикуються в технології отримання чистого неону та гелію.У даній статті проведено порівняльний аналіз варіантів забезпечення кріогенних температур, що можуть використовуватись в технологіях первинного збагачення неонгелієвої суміші. Серед них: рідкий азот, киплячий в умовах вакууму, ежектор, який працює в сукупності з вакуумом-насосом та як окремий пристрій, безмашинні вихрові апарати, що використовують наявний перепад тиску в ступенях фазового сепаратора. Найбільш поширеним варіантом охолодження фазових сепараторів є розімкнутий холодильний «цикл» з рідким азотом в якості робочої речовини. Однак, температура кипіння азоту при атмосферному тиску не забезпечує бажаної концентрації неону і гелію на виході з апарату. Розглянуто альтернативні способи охолодження сепараторів, які забезпечують пониження температури нижче 68 К. Завдяки цьому досягнуто додаткове збагачення цільових продуктів на виході з фазового сепаратора (дефлегматора).
ISSN:0453-8307
2409-6792