A Computational Model of Working Memory Integrating Time-Based Decay and Interference

There is still a strong debate in the working memory literature about the cause of forgetting, with many articles providing evidence for the existence of temporal decay and as many publications providing evidence compatible with interference being the only mechanism involved in forgetting. In order...

Full description

Bibliographic Details
Main Authors: Benoît Lemaire, Sophie Portrat
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-04-01
Series:Frontiers in Psychology
Subjects:
Online Access:http://journal.frontiersin.org/article/10.3389/fpsyg.2018.00416/full
_version_ 1811286450406162432
author Benoît Lemaire
Sophie Portrat
author_facet Benoît Lemaire
Sophie Portrat
author_sort Benoît Lemaire
collection DOAJ
description There is still a strong debate in the working memory literature about the cause of forgetting, with many articles providing evidence for the existence of temporal decay and as many publications providing evidence compatible with interference being the only mechanism involved in forgetting. In order to reconcile the two views, this article describes TBRS∗-I (for Time-Based Resource-Sharing∗-Interference), a computational model of working memory which incorporates an interference-based mechanism to the decay-based implementation TBRS∗ within the TBRS theoretical framework. At encoding, memoranda are associated to their context, namely their position in the list. Temporal decay decreases the strength of these associations, but a refreshing process may reactivate it during free time. Distractors may alter the distributed representation of memoranda but refreshing can restore them based on the long-term memory representations. Refreshing is therefore twofold: reactivation plus restoration, each one counteracting the detrimental time-based and interference-based decays, respectively. Two types of interference are implemented: interference by confusion which depends on the degree of overlap between memoranda and distractors and interference by superposition which depends on the similarity between them. TBRS∗-I was tested on six benchmark findings on retention-interval and distractor-processing effects by means of millions of simulations testing the effects of seven factors on memory performance: the number of memoranda, the duration of distractor attentional capture, the duration of free time, the number of distractors, the amount of overlap between memoranda and distractors, the similarity between memoranda and distractors and the homogeneity of distractors (all identical or all distinct). TBRS∗-I replicated classical effects and proved to be a suitable hybrid model integrating both interference and time-based decay. The article also discusses the compatibility of TBRS∗-I with a unitary or dual view of memory and the issue of integrating time and interference in a single model. Computer codes and data are available at https://osf.io/65sna/.
first_indexed 2024-04-13T03:00:08Z
format Article
id doaj.art-b82156c71c73456b86aabd4a4b9c5727
institution Directory Open Access Journal
issn 1664-1078
language English
last_indexed 2024-04-13T03:00:08Z
publishDate 2018-04-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Psychology
spelling doaj.art-b82156c71c73456b86aabd4a4b9c57272022-12-22T03:05:28ZengFrontiers Media S.A.Frontiers in Psychology1664-10782018-04-01910.3389/fpsyg.2018.00416335520A Computational Model of Working Memory Integrating Time-Based Decay and InterferenceBenoît LemaireSophie PortratThere is still a strong debate in the working memory literature about the cause of forgetting, with many articles providing evidence for the existence of temporal decay and as many publications providing evidence compatible with interference being the only mechanism involved in forgetting. In order to reconcile the two views, this article describes TBRS∗-I (for Time-Based Resource-Sharing∗-Interference), a computational model of working memory which incorporates an interference-based mechanism to the decay-based implementation TBRS∗ within the TBRS theoretical framework. At encoding, memoranda are associated to their context, namely their position in the list. Temporal decay decreases the strength of these associations, but a refreshing process may reactivate it during free time. Distractors may alter the distributed representation of memoranda but refreshing can restore them based on the long-term memory representations. Refreshing is therefore twofold: reactivation plus restoration, each one counteracting the detrimental time-based and interference-based decays, respectively. Two types of interference are implemented: interference by confusion which depends on the degree of overlap between memoranda and distractors and interference by superposition which depends on the similarity between them. TBRS∗-I was tested on six benchmark findings on retention-interval and distractor-processing effects by means of millions of simulations testing the effects of seven factors on memory performance: the number of memoranda, the duration of distractor attentional capture, the duration of free time, the number of distractors, the amount of overlap between memoranda and distractors, the similarity between memoranda and distractors and the homogeneity of distractors (all identical or all distinct). TBRS∗-I replicated classical effects and proved to be a suitable hybrid model integrating both interference and time-based decay. The article also discusses the compatibility of TBRS∗-I with a unitary or dual view of memory and the issue of integrating time and interference in a single model. Computer codes and data are available at https://osf.io/65sna/.http://journal.frontiersin.org/article/10.3389/fpsyg.2018.00416/fullworking memorytime-based decayinterferencecomputational modelingsimulationsrefreshing
spellingShingle Benoît Lemaire
Sophie Portrat
A Computational Model of Working Memory Integrating Time-Based Decay and Interference
Frontiers in Psychology
working memory
time-based decay
interference
computational modeling
simulations
refreshing
title A Computational Model of Working Memory Integrating Time-Based Decay and Interference
title_full A Computational Model of Working Memory Integrating Time-Based Decay and Interference
title_fullStr A Computational Model of Working Memory Integrating Time-Based Decay and Interference
title_full_unstemmed A Computational Model of Working Memory Integrating Time-Based Decay and Interference
title_short A Computational Model of Working Memory Integrating Time-Based Decay and Interference
title_sort computational model of working memory integrating time based decay and interference
topic working memory
time-based decay
interference
computational modeling
simulations
refreshing
url http://journal.frontiersin.org/article/10.3389/fpsyg.2018.00416/full
work_keys_str_mv AT benoitlemaire acomputationalmodelofworkingmemoryintegratingtimebaseddecayandinterference
AT sophieportrat acomputationalmodelofworkingmemoryintegratingtimebaseddecayandinterference
AT benoitlemaire computationalmodelofworkingmemoryintegratingtimebaseddecayandinterference
AT sophieportrat computationalmodelofworkingmemoryintegratingtimebaseddecayandinterference