A novel monoclonal antibody efficiently blocks the infection of serotype 4 fowl adenovirus by targeting fiber-2

Abstract A recent outbreak of hepatitis–hydropericardium syndrome caused by serotype 4 fowl adenovirus (FAdV-4) has resulted in significant economic losses to the poultry industry worldwide. However, little is known about the molecular pathogenesis of FAdV-4. In this study, a novel monoclonal antibo...

Full description

Bibliographic Details
Main Authors: Ping Wang, Jianjun Zhang, Weikang Wang, Tuofan Li, Guangchen Liang, Hongxia Shao, Wei Gao, Aijian Qin, Jianqiang Ye
Format: Article
Language:English
Published: BMC 2018-03-01
Series:Veterinary Research
Online Access:http://link.springer.com/article/10.1186/s13567-018-0525-y
Description
Summary:Abstract A recent outbreak of hepatitis–hydropericardium syndrome caused by serotype 4 fowl adenovirus (FAdV-4) has resulted in significant economic losses to the poultry industry worldwide. However, little is known about the molecular pathogenesis of FAdV-4. In this study, a novel monoclonal antibody (mAb) targeting the fiber-2 protein of FAdV-4 was generated, mAb 3C2. Indirect immunofluorescence assay showed that mAb 3C2 neither reacted with serotype 8 fowl adenovirus (FAdV-8) nor reacted with the fiber-1 protein of FAdV-4; it specifically reacted with the fiber-2 protein of FAdV-4. Notably, mAb 3C2 could efficiently immunoprecipitate the fiber-2 protein in chicken liver cells either infected with FAdV-4 or transfected with pcDNA3.1-Fiber2. Moreover, mAb 3C2 demonstrated marked neutralizing activity against FAdV-4 and could efficiently inhibit the infection of FAdV-4 in vitro. Using truncated fiber-2 constructs, the epitope recognized by mAb 3C2 was determined to be located between amino acids 416–448 at the C-terminus of fiber-2. Our data not only provide a foundation for the establishment of a rapid fiber-2 peptide-based diagnostic assay for FAdV-4 but also highlight the critical role of the fiber-2 protein in mediating infection by FAdV-4. Furthermore, the epitope recognized by 3C2 might serve as a novel target for the development of a vaccine targeting FAdV-4.
ISSN:1297-9716