Heart Disease Prediction Using Novel Quine McCluskey Binary Classifier (QMBC)
Cardiovascular disease is the primary reason for mortality worldwide, responsible for around a third of all deaths. To assist medical professionals in quickly identifying and diagnosing patients, numerous machine learning and data mining techniques are utilized to predict the disease. Many researche...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2023-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10163792/ |
_version_ | 1797788549067571200 |
---|---|
author | Ramdas Kapila Thirumalaisamy Ragunathan Sumalatha Saleti T. Jaya Lakshmi Mohd Wazih Ahmad |
author_facet | Ramdas Kapila Thirumalaisamy Ragunathan Sumalatha Saleti T. Jaya Lakshmi Mohd Wazih Ahmad |
author_sort | Ramdas Kapila |
collection | DOAJ |
description | Cardiovascular disease is the primary reason for mortality worldwide, responsible for around a third of all deaths. To assist medical professionals in quickly identifying and diagnosing patients, numerous machine learning and data mining techniques are utilized to predict the disease. Many researchers have developed various models to boost the efficiency of these predictions. Feature selection and extraction techniques are utilized to remove unnecessary features from the dataset, thereby reducing computation time and increasing the efficiency of the models. In this study, we introduce a new ensemble Quine McCluskey Binary Classifier (QMBC) technique for identifying patients diagnosed with some form of heart disease and those who are not diagnosed. The QMBC model utilizes an ensemble of seven models, including logistic regression, decision tree, random forest, K-nearest neighbour, naive bayes, support vector machine, and multilayer perceptron, and performs exceptionally well on binary class datasets. We employ feature selection and feature extraction techniques to accelerate the prediction process. We utilize Chi-Square and ANOVA approaches to identify the top 10 features and create a subset of the dataset. We then apply Principal Component Analysis to the subset to identify 9 prime components. We utilize an ensemble of all seven models and the Quine McCluskey technique to obtain the Minimum Boolean expression for the target feature. The results of the seven models (<inline-formula> <tex-math notation="LaTeX">$x_{0}, x_{1}, x_{2},\ldots, x_{6} $ </tex-math></inline-formula>) are considered independent features, while the target attribute is dependent. We combine the projected outcomes of the seven ML models and the target feature to form a foaming dataset. We apply the ensemble model to the dataset, utilizing the Quine McCluskey minimum Boolean equation built with an 80:20 train-to-test ratio. Our proposed QMBC model surpasses all current state-of-the-art models and previously suggested methods put forward by various researchers. |
first_indexed | 2024-03-13T01:38:06Z |
format | Article |
id | doaj.art-b8311dbd29554d07ad953bc582a33435 |
institution | Directory Open Access Journal |
issn | 2169-3536 |
language | English |
last_indexed | 2024-03-13T01:38:06Z |
publishDate | 2023-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Access |
spelling | doaj.art-b8311dbd29554d07ad953bc582a334352023-07-03T23:00:33ZengIEEEIEEE Access2169-35362023-01-0111643246434710.1109/ACCESS.2023.328958410163792Heart Disease Prediction Using Novel Quine McCluskey Binary Classifier (QMBC)Ramdas Kapila0https://orcid.org/0000-0001-9363-3613Thirumalaisamy Ragunathan1Sumalatha Saleti2https://orcid.org/0000-0003-1368-4993T. Jaya Lakshmi3https://orcid.org/0000-0003-0183-4093Mohd Wazih Ahmad4https://orcid.org/0000-0001-5614-2591Department of Computer Science and Engineering, Data Science Research Laboratory, SRM University AP, Amaravati, IndiaDepartment of Computer Science and Engineering, Sri Ramachandra Institute of Higher Education and Research, Chennai, IndiaDepartment of Computer Science and Engineering, Data Science Research Laboratory, SRM University AP, Amaravati, IndiaDepartment of Computer Science and Engineering, Data Science Research Laboratory, SRM University AP, Amaravati, IndiaAdama Science and Technology University, Adama, EthiopiaCardiovascular disease is the primary reason for mortality worldwide, responsible for around a third of all deaths. To assist medical professionals in quickly identifying and diagnosing patients, numerous machine learning and data mining techniques are utilized to predict the disease. Many researchers have developed various models to boost the efficiency of these predictions. Feature selection and extraction techniques are utilized to remove unnecessary features from the dataset, thereby reducing computation time and increasing the efficiency of the models. In this study, we introduce a new ensemble Quine McCluskey Binary Classifier (QMBC) technique for identifying patients diagnosed with some form of heart disease and those who are not diagnosed. The QMBC model utilizes an ensemble of seven models, including logistic regression, decision tree, random forest, K-nearest neighbour, naive bayes, support vector machine, and multilayer perceptron, and performs exceptionally well on binary class datasets. We employ feature selection and feature extraction techniques to accelerate the prediction process. We utilize Chi-Square and ANOVA approaches to identify the top 10 features and create a subset of the dataset. We then apply Principal Component Analysis to the subset to identify 9 prime components. We utilize an ensemble of all seven models and the Quine McCluskey technique to obtain the Minimum Boolean expression for the target feature. The results of the seven models (<inline-formula> <tex-math notation="LaTeX">$x_{0}, x_{1}, x_{2},\ldots, x_{6} $ </tex-math></inline-formula>) are considered independent features, while the target attribute is dependent. We combine the projected outcomes of the seven ML models and the target feature to form a foaming dataset. We apply the ensemble model to the dataset, utilizing the Quine McCluskey minimum Boolean equation built with an 80:20 train-to-test ratio. Our proposed QMBC model surpasses all current state-of-the-art models and previously suggested methods put forward by various researchers.https://ieeexplore.ieee.org/document/10163792/Machine learningchi-squareANOVAprincipal component analysisQuine McCluskey techniqueensemble approach |
spellingShingle | Ramdas Kapila Thirumalaisamy Ragunathan Sumalatha Saleti T. Jaya Lakshmi Mohd Wazih Ahmad Heart Disease Prediction Using Novel Quine McCluskey Binary Classifier (QMBC) IEEE Access Machine learning chi-square ANOVA principal component analysis Quine McCluskey technique ensemble approach |
title | Heart Disease Prediction Using Novel Quine McCluskey Binary Classifier (QMBC) |
title_full | Heart Disease Prediction Using Novel Quine McCluskey Binary Classifier (QMBC) |
title_fullStr | Heart Disease Prediction Using Novel Quine McCluskey Binary Classifier (QMBC) |
title_full_unstemmed | Heart Disease Prediction Using Novel Quine McCluskey Binary Classifier (QMBC) |
title_short | Heart Disease Prediction Using Novel Quine McCluskey Binary Classifier (QMBC) |
title_sort | heart disease prediction using novel quine mccluskey binary classifier qmbc |
topic | Machine learning chi-square ANOVA principal component analysis Quine McCluskey technique ensemble approach |
url | https://ieeexplore.ieee.org/document/10163792/ |
work_keys_str_mv | AT ramdaskapila heartdiseasepredictionusingnovelquinemccluskeybinaryclassifierqmbc AT thirumalaisamyragunathan heartdiseasepredictionusingnovelquinemccluskeybinaryclassifierqmbc AT sumalathasaleti heartdiseasepredictionusingnovelquinemccluskeybinaryclassifierqmbc AT tjayalakshmi heartdiseasepredictionusingnovelquinemccluskeybinaryclassifierqmbc AT mohdwazihahmad heartdiseasepredictionusingnovelquinemccluskeybinaryclassifierqmbc |