Transcriptome analysis of Artemisia argyi following methyl jasmonate (MeJA) treatment and the mining of genes related to the stress resistance pathway
Artemisia argyi Lev. et Vant. (A. argyi) is a perennial grass in the Artemisia family, the plant has a strong aroma. Methyl jasmonate (MeJA) is critical to plant growth and development, stress response, and secondary metabolic processes. The experimental material Artemisia argyi was utilized in this...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-11-01
|
Series: | Frontiers in Genetics |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fgene.2023.1279850/full |
_version_ | 1797640151562715136 |
---|---|
author | Jing Wang Jing Wang Yupeng Cui Shuyan Li Xinqiang Gao Kunpeng Zhang Kunpeng Zhang Xiangling Shen |
author_facet | Jing Wang Jing Wang Yupeng Cui Shuyan Li Xinqiang Gao Kunpeng Zhang Kunpeng Zhang Xiangling Shen |
author_sort | Jing Wang |
collection | DOAJ |
description | Artemisia argyi Lev. et Vant. (A. argyi) is a perennial grass in the Artemisia family, the plant has a strong aroma. Methyl jasmonate (MeJA) is critical to plant growth and development, stress response, and secondary metabolic processes. The experimental material Artemisia argyi was utilized in this study to investigate the treatment of A. argyi with exogenous MeJA at concentrations of 100 and 200 μmol/L for durations of 9 and 24 h respectively. Transcriptome sequencing was conducted using the Illumina HiSeq platform to identify stress resistance-related candidate genes. Finally, a total of 102.43 Gb of data were obtained and 162,272 unigenes were identified. Differential analysis before and after MeJA treatment resulted in the screening of 20,776 differentially expressed genes. The GO classification revealed that the annotated unigenes were categorized into three distinct groups: cellular component, molecular function, and biological process. Notably, binding, metabolic process, and cellular process emerged as the most prevalent categories among them. The results of KEGG pathway statistical analysis revealed that plant hormone signal transduction, MAPK signaling pathway-plant, and plant-pathogen interaction were significant transduction pathways in A. argyi’s response to exogenous MeJA-induced abiotic stress. With the alteration of exogenous MeJA concentration and duration, a significant upregulation was observed in the expression levels of calmodulin CaM4 (ID: EVM0136224) involved in MAPK signaling pathway-plant and auxin response factor ARF (ID: EVM0055178) associated with plant-pathogen interaction. The findings of this study establish a solid theoretical foundation for the future development of highly resistant varieties of A. argyi. |
first_indexed | 2024-03-11T13:27:47Z |
format | Article |
id | doaj.art-b84eaa86dbab4a7eb61baf4657fe4fa7 |
institution | Directory Open Access Journal |
issn | 1664-8021 |
language | English |
last_indexed | 2024-03-11T13:27:47Z |
publishDate | 2023-11-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Genetics |
spelling | doaj.art-b84eaa86dbab4a7eb61baf4657fe4fa72023-11-03T05:52:03ZengFrontiers Media S.A.Frontiers in Genetics1664-80212023-11-011410.3389/fgene.2023.12798501279850Transcriptome analysis of Artemisia argyi following methyl jasmonate (MeJA) treatment and the mining of genes related to the stress resistance pathwayJing Wang0Jing Wang1Yupeng Cui2Shuyan Li3Xinqiang Gao4Kunpeng Zhang5Kunpeng Zhang6Xiangling Shen7Biotechnology Research Center, China Three Gorges University, Yichang, ChinaCollege of Biology and Food Engineering, Anyang Institute of Technology, Anyang, ChinaCollege of Biology and Food Engineering, Anyang Institute of Technology, Anyang, ChinaCollege of Biology and Food Engineering, Anyang Institute of Technology, Anyang, ChinaCollege of Biology and Food Engineering, Anyang Institute of Technology, Anyang, ChinaBiotechnology Research Center, China Three Gorges University, Yichang, ChinaCollege of Biology and Food Engineering, Anyang Institute of Technology, Anyang, ChinaBiotechnology Research Center, China Three Gorges University, Yichang, ChinaArtemisia argyi Lev. et Vant. (A. argyi) is a perennial grass in the Artemisia family, the plant has a strong aroma. Methyl jasmonate (MeJA) is critical to plant growth and development, stress response, and secondary metabolic processes. The experimental material Artemisia argyi was utilized in this study to investigate the treatment of A. argyi with exogenous MeJA at concentrations of 100 and 200 μmol/L for durations of 9 and 24 h respectively. Transcriptome sequencing was conducted using the Illumina HiSeq platform to identify stress resistance-related candidate genes. Finally, a total of 102.43 Gb of data were obtained and 162,272 unigenes were identified. Differential analysis before and after MeJA treatment resulted in the screening of 20,776 differentially expressed genes. The GO classification revealed that the annotated unigenes were categorized into three distinct groups: cellular component, molecular function, and biological process. Notably, binding, metabolic process, and cellular process emerged as the most prevalent categories among them. The results of KEGG pathway statistical analysis revealed that plant hormone signal transduction, MAPK signaling pathway-plant, and plant-pathogen interaction were significant transduction pathways in A. argyi’s response to exogenous MeJA-induced abiotic stress. With the alteration of exogenous MeJA concentration and duration, a significant upregulation was observed in the expression levels of calmodulin CaM4 (ID: EVM0136224) involved in MAPK signaling pathway-plant and auxin response factor ARF (ID: EVM0055178) associated with plant-pathogen interaction. The findings of this study establish a solid theoretical foundation for the future development of highly resistant varieties of A. argyi.https://www.frontiersin.org/articles/10.3389/fgene.2023.1279850/fullArtemisia argyiMeJAtranscriptomeabiotic stressresponse |
spellingShingle | Jing Wang Jing Wang Yupeng Cui Shuyan Li Xinqiang Gao Kunpeng Zhang Kunpeng Zhang Xiangling Shen Transcriptome analysis of Artemisia argyi following methyl jasmonate (MeJA) treatment and the mining of genes related to the stress resistance pathway Frontiers in Genetics Artemisia argyi MeJA transcriptome abiotic stress response |
title | Transcriptome analysis of Artemisia argyi following methyl jasmonate (MeJA) treatment and the mining of genes related to the stress resistance pathway |
title_full | Transcriptome analysis of Artemisia argyi following methyl jasmonate (MeJA) treatment and the mining of genes related to the stress resistance pathway |
title_fullStr | Transcriptome analysis of Artemisia argyi following methyl jasmonate (MeJA) treatment and the mining of genes related to the stress resistance pathway |
title_full_unstemmed | Transcriptome analysis of Artemisia argyi following methyl jasmonate (MeJA) treatment and the mining of genes related to the stress resistance pathway |
title_short | Transcriptome analysis of Artemisia argyi following methyl jasmonate (MeJA) treatment and the mining of genes related to the stress resistance pathway |
title_sort | transcriptome analysis of artemisia argyi following methyl jasmonate meja treatment and the mining of genes related to the stress resistance pathway |
topic | Artemisia argyi MeJA transcriptome abiotic stress response |
url | https://www.frontiersin.org/articles/10.3389/fgene.2023.1279850/full |
work_keys_str_mv | AT jingwang transcriptomeanalysisofartemisiaargyifollowingmethyljasmonatemejatreatmentandtheminingofgenesrelatedtothestressresistancepathway AT jingwang transcriptomeanalysisofartemisiaargyifollowingmethyljasmonatemejatreatmentandtheminingofgenesrelatedtothestressresistancepathway AT yupengcui transcriptomeanalysisofartemisiaargyifollowingmethyljasmonatemejatreatmentandtheminingofgenesrelatedtothestressresistancepathway AT shuyanli transcriptomeanalysisofartemisiaargyifollowingmethyljasmonatemejatreatmentandtheminingofgenesrelatedtothestressresistancepathway AT xinqianggao transcriptomeanalysisofartemisiaargyifollowingmethyljasmonatemejatreatmentandtheminingofgenesrelatedtothestressresistancepathway AT kunpengzhang transcriptomeanalysisofartemisiaargyifollowingmethyljasmonatemejatreatmentandtheminingofgenesrelatedtothestressresistancepathway AT kunpengzhang transcriptomeanalysisofartemisiaargyifollowingmethyljasmonatemejatreatmentandtheminingofgenesrelatedtothestressresistancepathway AT xianglingshen transcriptomeanalysisofartemisiaargyifollowingmethyljasmonatemejatreatmentandtheminingofgenesrelatedtothestressresistancepathway |