Stabilization of a Rao–Nakra Sandwich Beam System by Coleman–Gurtin’s Thermal Law and Nonlinear Damping of Variable-Exponent Type

In this paper, we explore the asymptotic behavior of solutions in a thermoplastic Rao–Nakra (sandwich beam) beam equation featuring nonlinear damping with a variable exponent. The heat conduction in this context adheres to Coleman–Gurtin’s thermal law, encompassing linear damping, Fourier, and Gurti...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Mohammed M. Al-Gharabli, Shadi Al-Omari, Adel M. Al-Mahdi
Aineistotyyppi: Artikkeli
Kieli:English
Julkaistu: Wiley 2024-01-01
Sarja:Journal of Mathematics
Linkit:http://dx.doi.org/10.1155/2024/1615178
Kuvaus
Yhteenveto:In this paper, we explore the asymptotic behavior of solutions in a thermoplastic Rao–Nakra (sandwich beam) beam equation featuring nonlinear damping with a variable exponent. The heat conduction in this context adheres to Coleman–Gurtin’s thermal law, encompassing linear damping, Fourier, and Gurtin–Pipkin’s laws as specific instances. By employing the multiplier approach, we establish general energy decay results, with exponential decay as a particular manifestation. These findings extend and generalize previous decay results concerning the Rao–Nakra sandwich beam equations.
ISSN:2314-4785