Hinton & Nowlan’s computational Baldwin effect revisit: Are we happy with it? Akira Imada
In their seminal paper published in 1987, Hinton & Nowlan showed us an elegant experiment which might be called an evolution with the Baldwin effect in computers which searches for only one object located in a huge search space. The object was called a-needle-in-a-haystack. Hinton & Nowlan e...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius University Press
2008-01-01
|
Series: | Informacijos Mokslai |
Online Access: | http://www.journals.vu.lt/informacijos-mokslai/article/view/3418 |
Summary: | In their seminal paper published in 1987, Hinton & Nowlan showed us an elegant experiment which might be called an evolution with the Baldwin effect in computers which searches for only one object located in a huge search space. The object was called a-needle-in-a-haystack. Hinton & Nowlan evolved a population of candidates of the solution in the same way as a standard evolutionary search. What made it unique was an exploitation of individual’s lifetime-learning. Since then we have had a
fair amount of proposals of how we reach the needle more efficiently. The issue, however, is still open to debate. We try to repeat their experiment and take a consideration on it.
Naujai peržiūrimas Hintono ir Nowlano skaičiuojamasis Baldwino efektas: ar tai mus tenkina?
Akira Imada
Santrauka
Savo užuomazginiame straipsnyje, publikuotame 1987 m., Hintonas ir Nowlanas pademonstravo elegantišką eksperimentą, kurį galima vadinti evoliucija su Baldwino efektu kompiuteriuose, kuri ieško vieno objekto milžiniškoje paieškos erdvėje. Šis objektas buvo pavadintas adata šieno kupetoje. Hintonas ir Nowlanas išvystė visą populiaciją sprendimo kandidatų analogiškų standartinei evoliucinei paieškai. Unikalu buvo tai, kad panaudotas individo mokymasis visą gyvenimą. Nuo to laiko pateikta pakankamai daug siūlymų, kaip efektyviau pasiekti ieškomąją adatą. Tačiau šis klausimas išlieka atviras diskusijoms. Šiame straipsnyje pakartojamas ir apsvarstomas Hintono ir Nowlano eksperimentas. |
---|---|
ISSN: | 1392-0561 1392-1487 |