Cellular Pathophysiology of Leptospirosis: Role of Na/K-ATPase

Inada and Ido identified <i>Leptospira</i> sp. as the pathogen responsible for Weil’s Disease in 1915. Later, it was confirmed that Leptospira causes leptospirosis. The host microorganism’s interaction at the cellular level remained misunderstood for many years. Although different bacter...

Full description

Bibliographic Details
Main Authors: Cassiano Felippe Gonçalves-de-Albuquerque, Carolina Medina Coeli da Cunha, Léo Victor Grimaldi de Castro, Caroline de Azevedo Martins, Marcos Roberto Colombo Barnese, Patrícia Burth, Mauricio Younes-Ibrahim
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/11/7/1695
Description
Summary:Inada and Ido identified <i>Leptospira</i> sp. as the pathogen responsible for Weil’s Disease in 1915. Later, it was confirmed that Leptospira causes leptospirosis. The host microorganism’s interaction at the cellular level remained misunderstood for many years. Although different bacterial components have been isolated and purified, the complexity of the molecular interactions between these components and the host and the molecular mechanisms responsible for the systemic dysfunctions still needs to be fully unveiled. Leptospirosis affects virtually all animal species. Its cellular pathophysiology must involve a ubiquitous cellular mechanism in all eukaryotes. Na/K-ATPase is the molecular target of the leptospiral endotoxin (glycolipoprotein—GLP). Na/K-ATPase dysfunctions on different types of cells give rise to the organ disorders manifested in leptospirosis. Concomitantly, the development of a peculiar metabolic disorder characterized by dyslipidemia, with increased levels of circulating free fatty acids and an imbalance in the fatty acid/albumin molar ratio, triggers events of cellular lipotoxicity. Synergistically, multiple molecular stimuli are prompted during the infection, activating inflammasomes and Na/K-ATPase signalosome, leading to pro-inflammatory and metabolic alterations during leptospirosis. Leptospirosis involves diverse molecular mechanisms and alteration in patient inflammatory and metabolic status. Nonetheless, Na/K-ATPase is critical in the disease, and it is targeted by GLP, its components, and other molecules, such as fatty acids, that inhibit or trigger intracellular signaling through this enzyme. Herein, we overview the role of Na/K-ATPase during leptospirosis infection as a potential therapeutic target or an indicator of disease severity.
ISSN:2076-2607