The a posteriori error estimates of the Ciarlet-Raviart mixed finite element method for the biharmonic eigenvalue problem

The biharmonic equation/eigenvalue problem is one of the fundamental model problems in mathematics and physics and has wide applications. In this paper, for the biharmonic eigenvalue problem, based on the work of Gudi [<i>Numer. Methods Partial Differ. Equ.</i>, <b>27</b> (20...

Full description

Bibliographic Details
Main Authors: Jinhua Feng, Shixi Wang, Hai Bi, Yidu Yang
Format: Article
Language:English
Published: AIMS Press 2024-01-01
Series:AIMS Mathematics
Subjects:
Online Access:https://aimspress.com/article/doi/10.3934/math.2024163?viewType=HTML
_version_ 1797348714188111872
author Jinhua Feng
Shixi Wang
Hai Bi
Yidu Yang
author_facet Jinhua Feng
Shixi Wang
Hai Bi
Yidu Yang
author_sort Jinhua Feng
collection DOAJ
description The biharmonic equation/eigenvalue problem is one of the fundamental model problems in mathematics and physics and has wide applications. In this paper, for the biharmonic eigenvalue problem, based on the work of Gudi [<i>Numer. Methods Partial Differ. Equ.</i>, <b>27</b> (2011), 315-328], we study the a posteriori error estimates of the approximate eigenpairs obtained by the Ciarlet-Raviart mixed finite element method. We prove the reliability and efficiency of the error estimator of the approximate eigenfunction and analyze the reliability of the error estimator of the approximate eigenvalues. We also implement the adaptive calculation and exhibit the numerical experiments which show that our method is efficient and can get an approximate solution with high accuracy.
first_indexed 2024-03-08T12:09:57Z
format Article
id doaj.art-b872a63540b04705a09d891d40018b72
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-03-08T12:09:57Z
publishDate 2024-01-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-b872a63540b04705a09d891d40018b722024-01-23T01:34:17ZengAIMS PressAIMS Mathematics2473-69882024-01-01923332334810.3934/math.2024163The a posteriori error estimates of the Ciarlet-Raviart mixed finite element method for the biharmonic eigenvalue problemJinhua Feng0Shixi Wang1Hai Bi2Yidu Yang31. Qiushi College, Guizhou Normal University, Guiyang, Guizhou 550025, China 2. School of Mathematical Sciences, Guizhou Normal University, Guiyang, Guizhou 550025, China2. School of Mathematical Sciences, Guizhou Normal University, Guiyang, Guizhou 550025, China2. School of Mathematical Sciences, Guizhou Normal University, Guiyang, Guizhou 550025, China2. School of Mathematical Sciences, Guizhou Normal University, Guiyang, Guizhou 550025, ChinaThe biharmonic equation/eigenvalue problem is one of the fundamental model problems in mathematics and physics and has wide applications. In this paper, for the biharmonic eigenvalue problem, based on the work of Gudi [<i>Numer. Methods Partial Differ. Equ.</i>, <b>27</b> (2011), 315-328], we study the a posteriori error estimates of the approximate eigenpairs obtained by the Ciarlet-Raviart mixed finite element method. We prove the reliability and efficiency of the error estimator of the approximate eigenfunction and analyze the reliability of the error estimator of the approximate eigenvalues. We also implement the adaptive calculation and exhibit the numerical experiments which show that our method is efficient and can get an approximate solution with high accuracy.https://aimspress.com/article/doi/10.3934/math.2024163?viewType=HTMLthe biharmonic eigenvalueciarlet-raviart mixed methodconforming finite elementa posteriori error estimatoradaptive algorithm
spellingShingle Jinhua Feng
Shixi Wang
Hai Bi
Yidu Yang
The a posteriori error estimates of the Ciarlet-Raviart mixed finite element method for the biharmonic eigenvalue problem
AIMS Mathematics
the biharmonic eigenvalue
ciarlet-raviart mixed method
conforming finite element
a posteriori error estimator
adaptive algorithm
title The a posteriori error estimates of the Ciarlet-Raviart mixed finite element method for the biharmonic eigenvalue problem
title_full The a posteriori error estimates of the Ciarlet-Raviart mixed finite element method for the biharmonic eigenvalue problem
title_fullStr The a posteriori error estimates of the Ciarlet-Raviart mixed finite element method for the biharmonic eigenvalue problem
title_full_unstemmed The a posteriori error estimates of the Ciarlet-Raviart mixed finite element method for the biharmonic eigenvalue problem
title_short The a posteriori error estimates of the Ciarlet-Raviart mixed finite element method for the biharmonic eigenvalue problem
title_sort a posteriori error estimates of the ciarlet raviart mixed finite element method for the biharmonic eigenvalue problem
topic the biharmonic eigenvalue
ciarlet-raviart mixed method
conforming finite element
a posteriori error estimator
adaptive algorithm
url https://aimspress.com/article/doi/10.3934/math.2024163?viewType=HTML
work_keys_str_mv AT jinhuafeng theaposteriorierrorestimatesoftheciarletraviartmixedfiniteelementmethodforthebiharmoniceigenvalueproblem
AT shixiwang theaposteriorierrorestimatesoftheciarletraviartmixedfiniteelementmethodforthebiharmoniceigenvalueproblem
AT haibi theaposteriorierrorestimatesoftheciarletraviartmixedfiniteelementmethodforthebiharmoniceigenvalueproblem
AT yiduyang theaposteriorierrorestimatesoftheciarletraviartmixedfiniteelementmethodforthebiharmoniceigenvalueproblem
AT jinhuafeng aposteriorierrorestimatesoftheciarletraviartmixedfiniteelementmethodforthebiharmoniceigenvalueproblem
AT shixiwang aposteriorierrorestimatesoftheciarletraviartmixedfiniteelementmethodforthebiharmoniceigenvalueproblem
AT haibi aposteriorierrorestimatesoftheciarletraviartmixedfiniteelementmethodforthebiharmoniceigenvalueproblem
AT yiduyang aposteriorierrorestimatesoftheciarletraviartmixedfiniteelementmethodforthebiharmoniceigenvalueproblem