A Comparison of Model Averaging Techniques to Predict the Spatial Distribution of Soil Properties
This study tested and evaluated a suite of nine individual base learners and seven model averaging techniques for predicting the spatial distribution of soil properties in central Iran. Based on the nested-cross validation approach, the results showed that the artificial neural network and Random Fo...
المؤلفون الرئيسيون: | Ruhollah Taghizadeh-Mehrjardi, Hossein Khademi, Fatemeh Khayamim, Mojtaba Zeraatpisheh, Brandon Heung, Thomas Scholten |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
MDPI AG
2022-01-01
|
سلاسل: | Remote Sensing |
الموضوعات: | |
الوصول للمادة أونلاين: | https://www.mdpi.com/2072-4292/14/3/472 |
مواد مشابهة
-
Spatiotemporal Assessment of Soil Organic Carbon Change Using Machine-Learning in Arid Regions
حسب: Hassan Fathizad, وآخرون
منشور في: (2022-03-01) -
Improving the Spatial Prediction of Soil Organic Carbon Content in Two Contrasting Climatic Regions by Stacking Machine Learning Models and Rescanning Covariate Space
حسب: Ruhollah Taghizadeh-Mehrjardi, وآخرون
منشور في: (2020-03-01) -
Bio-Inspired Hybridization of Artificial Neural Networks: An Application for Mapping the Spatial Distribution of Soil Texture Fractions
حسب: Ruhollah Taghizadeh-Mehrjardi, وآخرون
منشور في: (2021-03-01) -
Digital Soil Texture Mapping and Spatial Transferability of Machine Learning Models Using Sentinel-1, Sentinel-2, and Terrain-Derived Covariates
حسب: Reza Mirzaeitalarposhti, وآخرون
منشور في: (2022-11-01) -
Bayesian Model Averaging with the Integrated Nested Laplace Approximation
حسب: Virgilio Gómez-Rubio, وآخرون
منشور في: (2020-06-01)