In Situ Investigation of the Formation Kinematics of Plasma-Generated Silver Nanoparticles

In this publication, it is shown how to synthesize silver nanoparticles from silver cations out of aqueous solutions by the use of an atmospheric pressure plasma source. The use of an atmospheric pressure plasma leads to a very fast reduction of silver ions in extensive solvent volumes. In order to...

Full description

Bibliographic Details
Main Authors: Daniel Tasche, Mirco Weber, Julia Mrotzek, Christoph Gerhard, Stephan Wieneke, Wiebke Möbius, Oliver Höfft, Wolfgang Viöl
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/10/3/555
Description
Summary:In this publication, it is shown how to synthesize silver nanoparticles from silver cations out of aqueous solutions by the use of an atmospheric pressure plasma source. The use of an atmospheric pressure plasma leads to a very fast reduction of silver ions in extensive solvent volumes. In order to investigate the nanoparticle synthesis process, ultraviolet/visible (UV/VIS) absorption spectra were recorded in situ. By using transmission electron microscopy and by the analysis of UV/VIS spectra, the kinetics of silver nanoparticle formation by plasma influence can be seen in more detail. For example, there are two different sections visible in the synthesis during the plasma exposure process. The first section of the synthesis is characterized by a linear formation of small spherical particles of nearly constant size. The second section is predominated by saturation effects. Here, particle faults are increasingly formed, induced by changes in the particle shape and the fusion of those particles. The plasma exposure time, therefore, determines the shape and size distribution of the nanoparticles.
ISSN:2079-4991