MPPT Menggunakan Metode Hibrid JST dan Algoritma Genetika Untuk Sistem Photovoltaic

Maximum Power Point Tracking is a method to track power point of an energy source in order to generate maximum power. One of the MPPT method for photovoltaic system is fractional open voltage MPPT. In this paper the fractional open voltage MPPT is modified by using artificial neural network trained...

Full description

Bibliographic Details
Main Authors: Gunawan Wibisono, Sholeh Hadi Pramono, Muhammad Aziz Muslim
Format: Article
Language:English
Published: Departement of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya 2014-12-01
Series:Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems)
Online Access:https://jurnaleeccis.ub.ac.id/index.php/eeccis/article/view/259
_version_ 1797640005114396672
author Gunawan Wibisono
Sholeh Hadi Pramono
Muhammad Aziz Muslim
author_facet Gunawan Wibisono
Sholeh Hadi Pramono
Muhammad Aziz Muslim
author_sort Gunawan Wibisono
collection DOAJ
description Maximum Power Point Tracking is a method to track power point of an energy source in order to generate maximum power. One of the MPPT method for photovoltaic system is fractional open voltage MPPT. In this paper the fractional open voltage MPPT is modified by using artificial neural network trained using genetic algorithm. Artificial neural networks are successfully trained by using genetic algorithm. The best mean squared error (MSE) value obtained is 0.000453. The network tested using test data, yielding average error = 0.00949509 and MSE = 0.00012814. The neural network-based MPPT can improve the fractional open voltage MPPT by 4.79%. Index Terms---Genetic Algorithm, MPPT, Neural Network, Photovoltaic
first_indexed 2024-03-11T13:25:42Z
format Article
id doaj.art-b88cb032ebbe4468be697db82f6d4780
institution Directory Open Access Journal
issn 2460-8122
language English
last_indexed 2024-03-11T13:25:42Z
publishDate 2014-12-01
publisher Departement of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya
record_format Article
series Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems)
spelling doaj.art-b88cb032ebbe4468be697db82f6d47802023-11-03T07:20:29ZengDepartement of Electrical Engineering, Faculty of Engineering, Universitas BrawijayaJurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems)2460-81222014-12-018218118610.21776/jeeccis.v8i2.259149MPPT Menggunakan Metode Hibrid JST dan Algoritma Genetika Untuk Sistem PhotovoltaicGunawan Wibisono0Sholeh Hadi Pramono1Muhammad Aziz Muslim2Program Magister Teknik Elektro Fakultas Teknik, Universitas BrawijayaJurusan Teknik Elektro Fakultas Teknik Universitas BrawijayaJurusan Teknik Elektro Fakultas Teknik Universitas BrawijayaMaximum Power Point Tracking is a method to track power point of an energy source in order to generate maximum power. One of the MPPT method for photovoltaic system is fractional open voltage MPPT. In this paper the fractional open voltage MPPT is modified by using artificial neural network trained using genetic algorithm. Artificial neural networks are successfully trained by using genetic algorithm. The best mean squared error (MSE) value obtained is 0.000453. The network tested using test data, yielding average error = 0.00949509 and MSE = 0.00012814. The neural network-based MPPT can improve the fractional open voltage MPPT by 4.79%. Index Terms---Genetic Algorithm, MPPT, Neural Network, Photovoltaichttps://jurnaleeccis.ub.ac.id/index.php/eeccis/article/view/259
spellingShingle Gunawan Wibisono
Sholeh Hadi Pramono
Muhammad Aziz Muslim
MPPT Menggunakan Metode Hibrid JST dan Algoritma Genetika Untuk Sistem Photovoltaic
Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems)
title MPPT Menggunakan Metode Hibrid JST dan Algoritma Genetika Untuk Sistem Photovoltaic
title_full MPPT Menggunakan Metode Hibrid JST dan Algoritma Genetika Untuk Sistem Photovoltaic
title_fullStr MPPT Menggunakan Metode Hibrid JST dan Algoritma Genetika Untuk Sistem Photovoltaic
title_full_unstemmed MPPT Menggunakan Metode Hibrid JST dan Algoritma Genetika Untuk Sistem Photovoltaic
title_short MPPT Menggunakan Metode Hibrid JST dan Algoritma Genetika Untuk Sistem Photovoltaic
title_sort mppt menggunakan metode hibrid jst dan algoritma genetika untuk sistem photovoltaic
url https://jurnaleeccis.ub.ac.id/index.php/eeccis/article/view/259
work_keys_str_mv AT gunawanwibisono mpptmenggunakanmetodehibridjstdanalgoritmagenetikauntuksistemphotovoltaic
AT sholehhadipramono mpptmenggunakanmetodehibridjstdanalgoritmagenetikauntuksistemphotovoltaic
AT muhammadazizmuslim mpptmenggunakanmetodehibridjstdanalgoritmagenetikauntuksistemphotovoltaic