Microwave assisted one-pot catalyst free green synthesis of new methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylates as potent in vitro antibacterial and antifungal activity
An efficiently simple protocol for the synthesis of methyl 7 amino-4-oxo-5-phenyl-2-thioxo-2, 3, 4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylates via one-pot three component condensation pathway is established via microwave irradiation using varied benzaldehyde derivatives, methylcyanoacetat...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2015-11-01
|
Series: | Journal of Advanced Research |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2090123214001301 |
Summary: | An efficiently simple protocol for the synthesis of methyl 7 amino-4-oxo-5-phenyl-2-thioxo-2, 3, 4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylates via one-pot three component condensation pathway is established via microwave irradiation using varied benzaldehyde derivatives, methylcyanoacetate and thio-barbituric acid in water as a green solvent. A variety of functionalized substrates were found to react under this methodology due to its easy operability and offers several advantages like, high yields (78–94%), short reaction time (3–6 min), safety and environment friendly without used any catalyst. The synthesized compounds (4a–4k) showed comparatively good in vitro antimicrobial and antifungal activities against different strains. The Compounds 4a, 4b, 4c, 4d 4e and 4f showed maximum antimicrobial activity against Staphylococcus aureus, Bacillus cereus (gram-positive bacteria), Escherichia coli, Klebshiella pneumonia, Pseudomonas aeruginosa (gram-negative bacteria). The synthesized compound 4f showed maximum antifungal activity against Aspergillus Niger and Penicillium chrysogenum strains. Streptomycin is used as standard for bacterial studies and Mycostatin as standards for fungal studies. Structure of all newly synthesized products was characterized on the basis of IR, 1H NMR, 13C NMR and mass spectral analysis. |
---|---|
ISSN: | 2090-1232 2090-1224 |