d-Allulose 3-epimerase of Bacillus sp. origin manifests profuse heat‐stability and noteworthy potential of d-fructose epimerization

Abstract Background d-Allulose is an ultra-low calorie sugar of multifarious health benefits, including anti-diabetic and anti-obesity potential. d-Allulose 3-epimerase family enzymes catalyze biosynthesis of d-allulose via epimerization of d-fructose. Results A novel d-allulose 3-epimerase (DaeB) w...

Full description

Bibliographic Details
Main Authors: Satya Narayan Patel, Girija Kaushal, Sudhir P. Singh
Format: Article
Language:English
Published: BMC 2021-03-01
Series:Microbial Cell Factories
Subjects:
Online Access:https://doi.org/10.1186/s12934-021-01550-1
Description
Summary:Abstract Background d-Allulose is an ultra-low calorie sugar of multifarious health benefits, including anti-diabetic and anti-obesity potential. d-Allulose 3-epimerase family enzymes catalyze biosynthesis of d-allulose via epimerization of d-fructose. Results A novel d-allulose 3-epimerase (DaeB) was cloned from a plant probiotic strain, Bacillus sp. KCTC 13219, and expressed in Bacillus subtilis cells. The purified protein exhibited substantial epimerization activity in a broad pH spectrum, 6.0–11.0. DaeB was able to catalyze d-fructose to d-allulose bioconversion at the temperature range of 35 °C to 70 °C, exhibiting at least 50 % activity. It displaced excessive heat stability, with the half-life of 25 days at 50 °C, and high turnover number (k cat 367 s− 1). The coupling of DaeB treatment and yeast fermentation of 700 g L− 1 d-fructose solution yielded approximately 200 g L− 1 d-allulose, and 214 g L− 1 ethanol. Conclusions The novel d-allulose 3-epimerase of Bacillus sp. origin discerned a high magnitude of heat stability along with exorbitant epimerization ability. This biocatalyst has enormous potential for the large-scale production of d-allulose.
ISSN:1475-2859