Nonexistence results for semilinear systems in unbounded domains

This paper concerns the non-existence of nontrivial solutions for the semi-linear system of gradient type $$displaylines{ lambda frac{partial ^{2}u_{k}}{partial t^{2}} -sum_{i=1}^n frac{partial }{partial x_{i}}(p_{i}(x)frac{ partial u_{k}}{partial x_{i}})+f_{k}(x,u_{1},dots ,u_{m}) =0quad ext{in }O...

Full description

Bibliographic Details
Main Authors: Abdelkrim Moussaoui, Brahim Khodja
Format: Article
Language:English
Published: Texas State University 2009-01-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2009/02/abstr.html
_version_ 1818543636892090368
author Abdelkrim Moussaoui
Brahim Khodja
author_facet Abdelkrim Moussaoui
Brahim Khodja
author_sort Abdelkrim Moussaoui
collection DOAJ
description This paper concerns the non-existence of nontrivial solutions for the semi-linear system of gradient type $$displaylines{ lambda frac{partial ^{2}u_{k}}{partial t^{2}} -sum_{i=1}^n frac{partial }{partial x_{i}}(p_{i}(x)frac{ partial u_{k}}{partial x_{i}})+f_{k}(x,u_{1},dots ,u_{m}) =0quad ext{in }Omega ,; k=1,dots ,m }$$ with Dirichlet, Neumann or Robin boundary conditions. The functions $f_{k}:mathcal{D}imes mathbb{R}^{m}o mathbb{R}$ $(k=1,dots ,m)$ are locally Lipschitz continuous and satisfy $$ 2H(x,u_{1},dots ,u_{m})-sum_{k=1}^m u_{k}f_{k}(x,u_{1},dots ,u_{m})geq 0quad (ext{resp.}leq 0) $$ for $lambda >0$ (resp. $lambda <0$). We establish the non-existence of nontrivial solutions using Pohozaev-type identities. Here $u_{1},dots ,u_{m}$ are in $H^{2}(Omega )cap L^{infty }(Omega )$, $Omega =mathbb{R}imes mathcal{D}$ with $mathcal{D}=prod_{i=1}^n (alpha _{i},eta _{i})$ and $Hin mathcal{C}^{1}(overline{mathcal{D}}imes mathbb{R}^{m})$ such that $frac{partial H}{partial u_{k}}=f_{k}$, $k=1,dots ,m $.
first_indexed 2024-12-11T22:38:00Z
format Article
id doaj.art-b8b88d6c1f0f4096bf0f8ea982e8d0f8
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-11T22:38:00Z
publishDate 2009-01-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-b8b88d6c1f0f4096bf0f8ea982e8d0f82022-12-22T00:47:54ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912009-01-01200902,111Nonexistence results for semilinear systems in unbounded domainsAbdelkrim MoussaouiBrahim KhodjaThis paper concerns the non-existence of nontrivial solutions for the semi-linear system of gradient type $$displaylines{ lambda frac{partial ^{2}u_{k}}{partial t^{2}} -sum_{i=1}^n frac{partial }{partial x_{i}}(p_{i}(x)frac{ partial u_{k}}{partial x_{i}})+f_{k}(x,u_{1},dots ,u_{m}) =0quad ext{in }Omega ,; k=1,dots ,m }$$ with Dirichlet, Neumann or Robin boundary conditions. The functions $f_{k}:mathcal{D}imes mathbb{R}^{m}o mathbb{R}$ $(k=1,dots ,m)$ are locally Lipschitz continuous and satisfy $$ 2H(x,u_{1},dots ,u_{m})-sum_{k=1}^m u_{k}f_{k}(x,u_{1},dots ,u_{m})geq 0quad (ext{resp.}leq 0) $$ for $lambda >0$ (resp. $lambda <0$). We establish the non-existence of nontrivial solutions using Pohozaev-type identities. Here $u_{1},dots ,u_{m}$ are in $H^{2}(Omega )cap L^{infty }(Omega )$, $Omega =mathbb{R}imes mathcal{D}$ with $mathcal{D}=prod_{i=1}^n (alpha _{i},eta _{i})$ and $Hin mathcal{C}^{1}(overline{mathcal{D}}imes mathbb{R}^{m})$ such that $frac{partial H}{partial u_{k}}=f_{k}$, $k=1,dots ,m $.http://ejde.math.txstate.edu/Volumes/2009/02/abstr.htmlSemi linear systemsPohozaev identitytrivial solutionRobin boundary condition
spellingShingle Abdelkrim Moussaoui
Brahim Khodja
Nonexistence results for semilinear systems in unbounded domains
Electronic Journal of Differential Equations
Semi linear systems
Pohozaev identity
trivial solution
Robin boundary condition
title Nonexistence results for semilinear systems in unbounded domains
title_full Nonexistence results for semilinear systems in unbounded domains
title_fullStr Nonexistence results for semilinear systems in unbounded domains
title_full_unstemmed Nonexistence results for semilinear systems in unbounded domains
title_short Nonexistence results for semilinear systems in unbounded domains
title_sort nonexistence results for semilinear systems in unbounded domains
topic Semi linear systems
Pohozaev identity
trivial solution
Robin boundary condition
url http://ejde.math.txstate.edu/Volumes/2009/02/abstr.html
work_keys_str_mv AT abdelkrimmoussaoui nonexistenceresultsforsemilinearsystemsinunboundeddomains
AT brahimkhodja nonexistenceresultsforsemilinearsystemsinunboundeddomains