Statistical Inference of the Generalized Inverted Exponential Distribution under Joint Progressively Type-II Censoring

In this paper, we study the statistical inference of the generalized inverted exponential distribution with the same scale parameter and various shape parameters based on joint progressively type-II censored data. The expectation maximization (EM) algorithm is applied to calculate the maximum likeli...

Full description

Bibliographic Details
Main Authors: Qiyue Chen, Wenhao Gui
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/5/576
Description
Summary:In this paper, we study the statistical inference of the generalized inverted exponential distribution with the same scale parameter and various shape parameters based on joint progressively type-II censored data. The expectation maximization (EM) algorithm is applied to calculate the maximum likelihood estimates (MLEs) of the parameters. We obtain the observed information matrix based on the missing value principle. Interval estimations are computed by the bootstrap method. We provide Bayesian inference for the informative prior and the non-informative prior. The importance sampling technique is performed to derive the Bayesian estimates and credible intervals under the squared error loss function and the linex loss function, respectively. Eventually, we conduct the Monte Carlo simulation and real data analysis. Moreover, we consider the parameters that have order restrictions and provide the maximum likelihood estimates and Bayesian inference.
ISSN:1099-4300