A Multi-Source Data Fusion Decision-Making Method for Disease and Pest Detection of Grape Foliage Based on ShuffleNet V2

Disease and pest detection of grape foliage is essential for grape yield and quality. RGB image (RGBI), multispectral image (MSI), and thermal infrared image (TIRI) are widely used in the health detection of plants. In this study, we collected three types of grape foliage images with six common clas...

Full description

Bibliographic Details
Main Authors: Rui Yang, Xiangyu Lu, Jing Huang, Jun Zhou, Jie Jiao, Yufei Liu, Fei Liu, Baofeng Su, Peiwen Gu
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/24/5102
Description
Summary:Disease and pest detection of grape foliage is essential for grape yield and quality. RGB image (RGBI), multispectral image (MSI), and thermal infrared image (TIRI) are widely used in the health detection of plants. In this study, we collected three types of grape foliage images with six common classes (anthracnose, downy mildew, leafhopper, mites, viral disease, and healthy) in the field. ShuffleNet V2 was used to build up detection models. According to the accuracy of RGBI, MSI, TIRI, and multi-source data concatenation (MDC) models, and a multi-source data fusion (MDF) decision-making method was proposed for improving the detection performance for grape foliage, aiming to enhance the decision-making for RGBI of grape foliage by fusing the MSI and TIRI. The results showed that 40% of the incorrect detection outputs were rectified using the MDF decision-making method. The overall accuracy of MDF model was 96.05%, which had improvements of 2.64%, 13.65%, and 27.79%, compared with the RGBI, MSI, and TIRI models using label smoothing, respectively. In addition, the MDF model was based on the lightweight network with 3.785 M total parameters and 0.362 G multiply-accumulate operations, which could be highly portable and easy to be applied.
ISSN:2072-4292