Time Reversal and Fractional Fourier Transform-Based Method for LFM Signal Detection in Underwater Multi-Path Channel

Fractional Fourier transform (FrFT) is a useful tool to detect linear frequency modulated (LFM) signal. However, the detection performance of the FrFT-based method will deteriorate drastically in underwater multi-path environment. This paper proposes a novel method based on time-reversal and fractio...

Full description

Bibliographic Details
Main Authors: Zhichen Zhang, Haiyan Wang, Haiyang Yao
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/2/583
Description
Summary:Fractional Fourier transform (FrFT) is a useful tool to detect linear frequency modulated (LFM) signal. However, the detection performance of the FrFT-based method will deteriorate drastically in underwater multi-path environment. This paper proposes a novel method based on time-reversal and fractional Fourier transform (TR-FrFT) to solve this problem. We make use of the focusing ability of time-reversal to mitigate the influence of multi-path, and then improve the detection performance of FrFT. Simulated results show that, compared to FrFT, the difference between peak value and maximum pseudo-peak value of the signal processed by TR-FrFT is improved by 8.75 dB. Lake experiments results indicate that, the difference between peak value and maximum pseudo-peak value of the signal processed by TR-FrFT is improved by 7.6 dB. The detection performance curves of FrFT and TR-FrFT detectors with simulated data and lake experiments data verify the effectiveness of proposed method.
ISSN:2076-3417