Training very large scale nonlinear SVMs using Alternating Direction Method of Multipliers coupled with the Hierarchically Semi-Separable kernel approximations

Typically, nonlinear Support Vector Machines (SVMs) produce significantly higher classification quality when compared to linear ones but, at the same time, their computational complexity is prohibitive for large-scale datasets: this drawback is essentially related to the necessity to store and manip...

Descripció completa

Dades bibliogràfiques
Autors principals: S. Cipolla, J. Gondzio
Format: Article
Idioma:English
Publicat: Elsevier 2022-01-01
Col·lecció:EURO Journal on Computational Optimization
Matèries:
Accés en línia:http://www.sciencedirect.com/science/article/pii/S2192440622000223