Off-diagonal Bethe Ansatz on the so(5) spin chain

The so(5) (i.e., B2) quantum integrable spin chains with both periodic and non-diagonal boundaries are studied via the off-diagonal Bethe Ansatz method. By using the fusion technique, sufficient operator product identities (comparing to those in [1]) to determine the spectrum of the transfer matrice...

Full description

Bibliographic Details
Main Authors: Guang-Liang Li, Junpeng Cao, Panpan Xue, Kun Hao, Pei Sun, Wen-Li Yang, Kangjie Shi, Yupeng Wang
Format: Article
Language:English
Published: Elsevier 2019-09-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S0550321319302056
_version_ 1819110961305354240
author Guang-Liang Li
Junpeng Cao
Panpan Xue
Kun Hao
Pei Sun
Wen-Li Yang
Kangjie Shi
Yupeng Wang
author_facet Guang-Liang Li
Junpeng Cao
Panpan Xue
Kun Hao
Pei Sun
Wen-Li Yang
Kangjie Shi
Yupeng Wang
author_sort Guang-Liang Li
collection DOAJ
description The so(5) (i.e., B2) quantum integrable spin chains with both periodic and non-diagonal boundaries are studied via the off-diagonal Bethe Ansatz method. By using the fusion technique, sufficient operator product identities (comparing to those in [1]) to determine the spectrum of the transfer matrices are derived. For the periodic case, we recover the results obtained in [1], while for the non-diagonal boundary case, a new inhomogeneous T−Q relation is constructed. The present method can be directly generalized to deal with the so(2n+1) (i.e., Bn) quantum integrable spin chains with general boundaries.
first_indexed 2024-12-22T03:50:02Z
format Article
id doaj.art-b905ae2d7eb34e388638c7bc050c711b
institution Directory Open Access Journal
issn 0550-3213
language English
last_indexed 2024-12-22T03:50:02Z
publishDate 2019-09-01
publisher Elsevier
record_format Article
series Nuclear Physics B
spelling doaj.art-b905ae2d7eb34e388638c7bc050c711b2022-12-21T18:40:02ZengElsevierNuclear Physics B0550-32132019-09-01946Off-diagonal Bethe Ansatz on the so(5) spin chainGuang-Liang Li0Junpeng Cao1Panpan Xue2Kun Hao3Pei Sun4Wen-Li Yang5Kangjie Shi6Yupeng Wang7Department of Applied Physics, Xian Jiaotong University, Xian 710049, ChinaBeijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, ChinaDepartment of Applied Physics, Xian Jiaotong University, Xian 710049, ChinaInstitute of Modern Physics, Northwest University, Xian 710127, China; Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xian 710127, ChinaInstitute of Modern Physics, Northwest University, Xian 710127, China; Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xian 710127, ChinaInstitute of Modern Physics, Northwest University, Xian 710127, China; Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xian 710127, China; School of Physics, Northwest University, Xian 710127, China; Corresponding author at: School of Physics, Northwest University, Xian 710127, China.Institute of Modern Physics, Northwest University, Xian 710127, China; Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xian 710127, ChinaBeijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China; The Yangtze River Delta Physics Research Center, Liyang, Jiangsu, China; Corresponding author.The so(5) (i.e., B2) quantum integrable spin chains with both periodic and non-diagonal boundaries are studied via the off-diagonal Bethe Ansatz method. By using the fusion technique, sufficient operator product identities (comparing to those in [1]) to determine the spectrum of the transfer matrices are derived. For the periodic case, we recover the results obtained in [1], while for the non-diagonal boundary case, a new inhomogeneous T−Q relation is constructed. The present method can be directly generalized to deal with the so(2n+1) (i.e., Bn) quantum integrable spin chains with general boundaries.http://www.sciencedirect.com/science/article/pii/S0550321319302056
spellingShingle Guang-Liang Li
Junpeng Cao
Panpan Xue
Kun Hao
Pei Sun
Wen-Li Yang
Kangjie Shi
Yupeng Wang
Off-diagonal Bethe Ansatz on the so(5) spin chain
Nuclear Physics B
title Off-diagonal Bethe Ansatz on the so(5) spin chain
title_full Off-diagonal Bethe Ansatz on the so(5) spin chain
title_fullStr Off-diagonal Bethe Ansatz on the so(5) spin chain
title_full_unstemmed Off-diagonal Bethe Ansatz on the so(5) spin chain
title_short Off-diagonal Bethe Ansatz on the so(5) spin chain
title_sort off diagonal bethe ansatz on the so 5 spin chain
url http://www.sciencedirect.com/science/article/pii/S0550321319302056
work_keys_str_mv AT guangliangli offdiagonalbetheansatzontheso5spinchain
AT junpengcao offdiagonalbetheansatzontheso5spinchain
AT panpanxue offdiagonalbetheansatzontheso5spinchain
AT kunhao offdiagonalbetheansatzontheso5spinchain
AT peisun offdiagonalbetheansatzontheso5spinchain
AT wenliyang offdiagonalbetheansatzontheso5spinchain
AT kangjieshi offdiagonalbetheansatzontheso5spinchain
AT yupengwang offdiagonalbetheansatzontheso5spinchain