Graded Medial <i>n</i>-Ary Algebras and Polyadic Tensor Categories

Algebraic structures in which the property of commutativity is substituted by the mediality property are introduced. We consider (associative) graded algebras and instead of almost commutativity (generalized commutativity or <inline-formula><math xmlns="http://www.w3.org/1998/Math/Math...

Full description

Bibliographic Details
Main Author: Steven Duplij
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/6/1038
_version_ 1797530888684175360
author Steven Duplij
author_facet Steven Duplij
author_sort Steven Duplij
collection DOAJ
description Algebraic structures in which the property of commutativity is substituted by the mediality property are introduced. We consider (associative) graded algebras and instead of almost commutativity (generalized commutativity or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>-commutativity), we introduce almost mediality (“commutativity-to-mediality” ansatz). Higher graded twisted products and “deforming” brackets (being the medial analog of Lie brackets) are defined. Toyoda’s theorem which connects (universal) medial algebras with abelian algebras is proven for the almost medial graded algebras introduced here. In a similar way we generalize tensor categories and braided tensor categories. A polyadic (non-strict) tensor category has an <i>n</i>-ary tensor product as an additional multiplication with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> associators of the arity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> satisfying a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mfenced></semantics></math></inline-formula>-gon relation, which is a polyadic analog of the pentagon axiom. Polyadic monoidal categories may contain several unit objects, and it is also possible that all objects are units. A new kind of polyadic categories (called groupal) is defined: they are close to monoidal categories but may not contain units: instead the querfunctor and (natural) functorial isomorphisms, the quertors, are considered (by analogy with the querelements in <i>n</i>-ary groups). The arity-nonreducible <i>n</i>-ary braiding is introduced and the equation for it is derived, which for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula> coincides with the Yang–Baxter equation. Then, analogously to the first part of the paper, we introduce “medialing” instead of braiding and construct “medialed” polyadic tensor categories.
first_indexed 2024-03-10T10:35:28Z
format Article
id doaj.art-b905b171085f4439b01f8b11b20f4082
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T10:35:28Z
publishDate 2021-06-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-b905b171085f4439b01f8b11b20f40822023-11-21T23:20:21ZengMDPI AGSymmetry2073-89942021-06-01136103810.3390/sym13061038Graded Medial <i>n</i>-Ary Algebras and Polyadic Tensor CategoriesSteven Duplij0Center for Information Technology (WWU IT), Universität Münster, Röntgenstrasse 7-13, 48149 Münster, GermanyAlgebraic structures in which the property of commutativity is substituted by the mediality property are introduced. We consider (associative) graded algebras and instead of almost commutativity (generalized commutativity or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>-commutativity), we introduce almost mediality (“commutativity-to-mediality” ansatz). Higher graded twisted products and “deforming” brackets (being the medial analog of Lie brackets) are defined. Toyoda’s theorem which connects (universal) medial algebras with abelian algebras is proven for the almost medial graded algebras introduced here. In a similar way we generalize tensor categories and braided tensor categories. A polyadic (non-strict) tensor category has an <i>n</i>-ary tensor product as an additional multiplication with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> associators of the arity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> satisfying a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mfenced></semantics></math></inline-formula>-gon relation, which is a polyadic analog of the pentagon axiom. Polyadic monoidal categories may contain several unit objects, and it is also possible that all objects are units. A new kind of polyadic categories (called groupal) is defined: they are close to monoidal categories but may not contain units: instead the querfunctor and (natural) functorial isomorphisms, the quertors, are considered (by analogy with the querelements in <i>n</i>-ary groups). The arity-nonreducible <i>n</i>-ary braiding is introduced and the equation for it is derived, which for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula> coincides with the Yang–Baxter equation. Then, analogously to the first part of the paper, we introduce “medialing” instead of braiding and construct “medialed” polyadic tensor categories.https://www.mdpi.com/2073-8994/13/6/1038gradingcommutativitymedialitytensor categorymonoidal categorybraiding
spellingShingle Steven Duplij
Graded Medial <i>n</i>-Ary Algebras and Polyadic Tensor Categories
Symmetry
grading
commutativity
mediality
tensor category
monoidal category
braiding
title Graded Medial <i>n</i>-Ary Algebras and Polyadic Tensor Categories
title_full Graded Medial <i>n</i>-Ary Algebras and Polyadic Tensor Categories
title_fullStr Graded Medial <i>n</i>-Ary Algebras and Polyadic Tensor Categories
title_full_unstemmed Graded Medial <i>n</i>-Ary Algebras and Polyadic Tensor Categories
title_short Graded Medial <i>n</i>-Ary Algebras and Polyadic Tensor Categories
title_sort graded medial i n i ary algebras and polyadic tensor categories
topic grading
commutativity
mediality
tensor category
monoidal category
braiding
url https://www.mdpi.com/2073-8994/13/6/1038
work_keys_str_mv AT stevenduplij gradedmedialiniaryalgebrasandpolyadictensorcategories