Tumor Treating Fields (TTFields) Reversibly Permeabilize the Blood–Brain Barrier In Vitro and In Vivo

Despite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood–brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery....

Full description

Bibliographic Details
Main Authors: Ellaine Salvador, Almuth F. Kessler, Dominik Domröse, Julia Hörmann, Clara Schaeffer, Aiste Giniunaite, Malgorzata Burek, Catherine Tempel-Brami, Tali Voloshin, Alexandra Volodin, Adel Zeidan, Moshe Giladi, Ralf-Ingo Ernestus, Mario Löhr, Carola Y. Förster, Carsten Hagemann
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/12/10/1348
_version_ 1797474951844855808
author Ellaine Salvador
Almuth F. Kessler
Dominik Domröse
Julia Hörmann
Clara Schaeffer
Aiste Giniunaite
Malgorzata Burek
Catherine Tempel-Brami
Tali Voloshin
Alexandra Volodin
Adel Zeidan
Moshe Giladi
Ralf-Ingo Ernestus
Mario Löhr
Carola Y. Förster
Carsten Hagemann
author_facet Ellaine Salvador
Almuth F. Kessler
Dominik Domröse
Julia Hörmann
Clara Schaeffer
Aiste Giniunaite
Malgorzata Burek
Catherine Tempel-Brami
Tali Voloshin
Alexandra Volodin
Adel Zeidan
Moshe Giladi
Ralf-Ingo Ernestus
Mario Löhr
Carola Y. Förster
Carsten Hagemann
author_sort Ellaine Salvador
collection DOAJ
description Despite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood–brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery. We report, for the first time, how Tumor Treating Fields (TTFields), approved for glioblastoma (GBM), affect the BBB’s integrity and permeability. Here, we treated murine microvascular cerebellar endothelial cells (cerebEND) with 100–300 kHz TTFields for up to 72 h and analyzed the expression of barrier proteins by immunofluorescence staining and Western blot. In vivo, compounds normally unable to cross the BBB were traced in healthy rat brain following TTFields administration at 100 kHz. The effects were analyzed via MRI and immunohistochemical staining of tight-junction proteins. Furthermore, GBM tumor-bearing rats were treated with paclitaxel (PTX), a chemotherapeutic normally restricted by the BBB combined with TTFields at 100 kHz. The tumor volume was reduced with TTFields plus PTX, relative to either treatment alone. In vitro, we demonstrate that TTFields transiently disrupted BBB function at 100 kHz through a Rho kinase-mediated tight junction claudin-5 phosphorylation pathway. Altogether, if translated into clinical use, TTFields could represent a novel CNS drug delivery strategy.
first_indexed 2024-03-09T20:38:12Z
format Article
id doaj.art-b91b48214a2d4b4198e80fa053ef9dd0
institution Directory Open Access Journal
issn 2218-273X
language English
last_indexed 2024-03-09T20:38:12Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Biomolecules
spelling doaj.art-b91b48214a2d4b4198e80fa053ef9dd02023-11-23T23:07:13ZengMDPI AGBiomolecules2218-273X2022-09-011210134810.3390/biom12101348Tumor Treating Fields (TTFields) Reversibly Permeabilize the Blood–Brain Barrier In Vitro and In VivoEllaine Salvador0Almuth F. Kessler1Dominik Domröse2Julia Hörmann3Clara Schaeffer4Aiste Giniunaite5Malgorzata Burek6Catherine Tempel-Brami7Tali Voloshin8Alexandra Volodin9Adel Zeidan10Moshe Giladi11Ralf-Ingo Ernestus12Mario Löhr13Carola Y. Förster14Carsten Hagemann15Department of Neurosurgery, Section Experimental Neurosurgery, University of Würzburg, D-97080 Würzburg, GermanyDepartment of Neurosurgery, Section Experimental Neurosurgery, University of Würzburg, D-97080 Würzburg, GermanyDepartment of Neurosurgery, Section Experimental Neurosurgery, University of Würzburg, D-97080 Würzburg, GermanyDepartment of Neurosurgery, Section Experimental Neurosurgery, University of Würzburg, D-97080 Würzburg, GermanyDepartment of Neurosurgery, Section Experimental Neurosurgery, University of Würzburg, D-97080 Würzburg, GermanyDepartment of Neurosurgery, Section Experimental Neurosurgery, University of Würzburg, D-97080 Würzburg, GermanyDepartment of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, D-97080 Würzburg, GermanyNovocure Ltd., Haifa 3190500, IsraelNovocure Ltd., Haifa 3190500, IsraelNovocure Ltd., Haifa 3190500, IsraelNovocure Ltd., Haifa 3190500, IsraelNovocure Ltd., Haifa 3190500, IsraelDepartment of Neurosurgery, Section Experimental Neurosurgery, University of Würzburg, D-97080 Würzburg, GermanyDepartment of Neurosurgery, Section Experimental Neurosurgery, University of Würzburg, D-97080 Würzburg, GermanyDepartment of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, D-97080 Würzburg, GermanyDepartment of Neurosurgery, Section Experimental Neurosurgery, University of Würzburg, D-97080 Würzburg, GermanyDespite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood–brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery. We report, for the first time, how Tumor Treating Fields (TTFields), approved for glioblastoma (GBM), affect the BBB’s integrity and permeability. Here, we treated murine microvascular cerebellar endothelial cells (cerebEND) with 100–300 kHz TTFields for up to 72 h and analyzed the expression of barrier proteins by immunofluorescence staining and Western blot. In vivo, compounds normally unable to cross the BBB were traced in healthy rat brain following TTFields administration at 100 kHz. The effects were analyzed via MRI and immunohistochemical staining of tight-junction proteins. Furthermore, GBM tumor-bearing rats were treated with paclitaxel (PTX), a chemotherapeutic normally restricted by the BBB combined with TTFields at 100 kHz. The tumor volume was reduced with TTFields plus PTX, relative to either treatment alone. In vitro, we demonstrate that TTFields transiently disrupted BBB function at 100 kHz through a Rho kinase-mediated tight junction claudin-5 phosphorylation pathway. Altogether, if translated into clinical use, TTFields could represent a novel CNS drug delivery strategy.https://www.mdpi.com/2218-273X/12/10/1348blood–brain barrierTTFieldsCNS disorders
spellingShingle Ellaine Salvador
Almuth F. Kessler
Dominik Domröse
Julia Hörmann
Clara Schaeffer
Aiste Giniunaite
Malgorzata Burek
Catherine Tempel-Brami
Tali Voloshin
Alexandra Volodin
Adel Zeidan
Moshe Giladi
Ralf-Ingo Ernestus
Mario Löhr
Carola Y. Förster
Carsten Hagemann
Tumor Treating Fields (TTFields) Reversibly Permeabilize the Blood–Brain Barrier In Vitro and In Vivo
Biomolecules
blood–brain barrier
TTFields
CNS disorders
title Tumor Treating Fields (TTFields) Reversibly Permeabilize the Blood–Brain Barrier In Vitro and In Vivo
title_full Tumor Treating Fields (TTFields) Reversibly Permeabilize the Blood–Brain Barrier In Vitro and In Vivo
title_fullStr Tumor Treating Fields (TTFields) Reversibly Permeabilize the Blood–Brain Barrier In Vitro and In Vivo
title_full_unstemmed Tumor Treating Fields (TTFields) Reversibly Permeabilize the Blood–Brain Barrier In Vitro and In Vivo
title_short Tumor Treating Fields (TTFields) Reversibly Permeabilize the Blood–Brain Barrier In Vitro and In Vivo
title_sort tumor treating fields ttfields reversibly permeabilize the blood brain barrier in vitro and in vivo
topic blood–brain barrier
TTFields
CNS disorders
url https://www.mdpi.com/2218-273X/12/10/1348
work_keys_str_mv AT ellainesalvador tumortreatingfieldsttfieldsreversiblypermeabilizethebloodbrainbarrierinvitroandinvivo
AT almuthfkessler tumortreatingfieldsttfieldsreversiblypermeabilizethebloodbrainbarrierinvitroandinvivo
AT dominikdomrose tumortreatingfieldsttfieldsreversiblypermeabilizethebloodbrainbarrierinvitroandinvivo
AT juliahormann tumortreatingfieldsttfieldsreversiblypermeabilizethebloodbrainbarrierinvitroandinvivo
AT claraschaeffer tumortreatingfieldsttfieldsreversiblypermeabilizethebloodbrainbarrierinvitroandinvivo
AT aisteginiunaite tumortreatingfieldsttfieldsreversiblypermeabilizethebloodbrainbarrierinvitroandinvivo
AT malgorzataburek tumortreatingfieldsttfieldsreversiblypermeabilizethebloodbrainbarrierinvitroandinvivo
AT catherinetempelbrami tumortreatingfieldsttfieldsreversiblypermeabilizethebloodbrainbarrierinvitroandinvivo
AT talivoloshin tumortreatingfieldsttfieldsreversiblypermeabilizethebloodbrainbarrierinvitroandinvivo
AT alexandravolodin tumortreatingfieldsttfieldsreversiblypermeabilizethebloodbrainbarrierinvitroandinvivo
AT adelzeidan tumortreatingfieldsttfieldsreversiblypermeabilizethebloodbrainbarrierinvitroandinvivo
AT moshegiladi tumortreatingfieldsttfieldsreversiblypermeabilizethebloodbrainbarrierinvitroandinvivo
AT ralfingoernestus tumortreatingfieldsttfieldsreversiblypermeabilizethebloodbrainbarrierinvitroandinvivo
AT mariolohr tumortreatingfieldsttfieldsreversiblypermeabilizethebloodbrainbarrierinvitroandinvivo
AT carolayforster tumortreatingfieldsttfieldsreversiblypermeabilizethebloodbrainbarrierinvitroandinvivo
AT carstenhagemann tumortreatingfieldsttfieldsreversiblypermeabilizethebloodbrainbarrierinvitroandinvivo