Sensitivity analysis of collision risk at wind turbines based on flight altitude of migratory waterbirds

Abstract A rapid increase in wind power generation has led to bird collisions becoming a serious problem worldwide. Developing useful sensitivity maps to select low‐risk sites for birds is an urgent issue. For migratory birds, such as geese and swans, that visit different habitats throughout their l...

Full description

Bibliographic Details
Main Authors: Taito Kamata, Hitomi Sato, Haruka Mukai, Takahiro Sato, Shintaro Yamada, Tsuneo Sekijima
Format: Article
Language:English
Published: Wiley 2023-04-01
Series:Ecological Solutions and Evidence
Subjects:
Online Access:https://doi.org/10.1002/2688-8319.12222
_version_ 1797784029099982848
author Taito Kamata
Hitomi Sato
Haruka Mukai
Takahiro Sato
Shintaro Yamada
Tsuneo Sekijima
author_facet Taito Kamata
Hitomi Sato
Haruka Mukai
Takahiro Sato
Shintaro Yamada
Tsuneo Sekijima
author_sort Taito Kamata
collection DOAJ
description Abstract A rapid increase in wind power generation has led to bird collisions becoming a serious problem worldwide. Developing useful sensitivity maps to select low‐risk sites for birds is an urgent issue. For migratory birds, such as geese and swans, that visit different habitats throughout their life cycle, it is important to conduct risk assessments that take into account their behavioural characteristics in each habitat. Geese and swans fly and migrate at varying altitudes (above the ground) ranging from 10 to hundreds of metres. Accurate predictions of avian flight altitudes are essential in assessing the risks of collisions with human‐made structures. We first obtained location data for four species of geese and swans to identify their spring migratory routes within Japan (Bean Goose Anser fabalis and Anser serrirostris, Greater White‐fronted Goose Anser albifrons, Tundra Swan Cygnus columbianus bewickii and Whooper Swan Cygnus cygnus). As all four species used the same roosts and overlapping foraging areas from winter to spring, a single migratory route was defined by integrating the location data of the four species. Flight trajectories were tracked using an ornithodolite. The median flight height for these four species in all landscape types was 150 m or less. Then a LASSO regression model was created with flight altitude obtained as the response variable and topographic and landscape factors as explanatory variables. Trends in flight altitude with environmental differences were similar for the four species, indicating that topographical factors strongly influence flight altitude. Finally, a statistical model was used to predict flight altitudes along migration routes. The sensitivity maps we generated showed that for all four species, most flight heights during spring were within the wind turbine range, suggesting that their risk of collision with wind turbines was greater along their migratory route. Sensitivity maps that accurately reflect avian flight characteristics help provide useful information when considering the location of further wind turbine construction.
first_indexed 2024-03-13T00:34:11Z
format Article
id doaj.art-b927ff3c34bd4ff0a6d469c89b0e99b8
institution Directory Open Access Journal
issn 2688-8319
language English
last_indexed 2024-03-13T00:34:11Z
publishDate 2023-04-01
publisher Wiley
record_format Article
series Ecological Solutions and Evidence
spelling doaj.art-b927ff3c34bd4ff0a6d469c89b0e99b82023-07-10T07:36:35ZengWileyEcological Solutions and Evidence2688-83192023-04-0142n/an/a10.1002/2688-8319.12222Sensitivity analysis of collision risk at wind turbines based on flight altitude of migratory waterbirdsTaito Kamata0Hitomi Sato1Haruka Mukai2Takahiro Sato3Shintaro Yamada4Tsuneo Sekijima5Faculty of Agriculture Niigata University 8050 Ikarashi 2‐nocho Niigata 950‐2181 JapanGraduate School of Science and Technology Niigata University 8050 Ikarashi 2‐nocho Niigata 950‐2181 JapanGraduate School of Science and Technology Niigata University 8050 Ikarashi 2‐nocho Niigata 950‐2181 JapanFaculty of Agriculture Niigata University 8050 Ikarashi 2‐nocho Niigata 950‐2181 JapanGraduate School of Science and Technology Niigata University 8050 Ikarashi 2‐nocho Niigata 950‐2181 JapanFaculty of Agriculture Niigata University 8050 Ikarashi 2‐nocho Niigata 950‐2181 JapanAbstract A rapid increase in wind power generation has led to bird collisions becoming a serious problem worldwide. Developing useful sensitivity maps to select low‐risk sites for birds is an urgent issue. For migratory birds, such as geese and swans, that visit different habitats throughout their life cycle, it is important to conduct risk assessments that take into account their behavioural characteristics in each habitat. Geese and swans fly and migrate at varying altitudes (above the ground) ranging from 10 to hundreds of metres. Accurate predictions of avian flight altitudes are essential in assessing the risks of collisions with human‐made structures. We first obtained location data for four species of geese and swans to identify their spring migratory routes within Japan (Bean Goose Anser fabalis and Anser serrirostris, Greater White‐fronted Goose Anser albifrons, Tundra Swan Cygnus columbianus bewickii and Whooper Swan Cygnus cygnus). As all four species used the same roosts and overlapping foraging areas from winter to spring, a single migratory route was defined by integrating the location data of the four species. Flight trajectories were tracked using an ornithodolite. The median flight height for these four species in all landscape types was 150 m or less. Then a LASSO regression model was created with flight altitude obtained as the response variable and topographic and landscape factors as explanatory variables. Trends in flight altitude with environmental differences were similar for the four species, indicating that topographical factors strongly influence flight altitude. Finally, a statistical model was used to predict flight altitudes along migration routes. The sensitivity maps we generated showed that for all four species, most flight heights during spring were within the wind turbine range, suggesting that their risk of collision with wind turbines was greater along their migratory route. Sensitivity maps that accurately reflect avian flight characteristics help provide useful information when considering the location of further wind turbine construction.https://doi.org/10.1002/2688-8319.12222flight altitudegeesemigration routesornithodolitesensitivity mapswan
spellingShingle Taito Kamata
Hitomi Sato
Haruka Mukai
Takahiro Sato
Shintaro Yamada
Tsuneo Sekijima
Sensitivity analysis of collision risk at wind turbines based on flight altitude of migratory waterbirds
Ecological Solutions and Evidence
flight altitude
geese
migration routes
ornithodolite
sensitivity map
swan
title Sensitivity analysis of collision risk at wind turbines based on flight altitude of migratory waterbirds
title_full Sensitivity analysis of collision risk at wind turbines based on flight altitude of migratory waterbirds
title_fullStr Sensitivity analysis of collision risk at wind turbines based on flight altitude of migratory waterbirds
title_full_unstemmed Sensitivity analysis of collision risk at wind turbines based on flight altitude of migratory waterbirds
title_short Sensitivity analysis of collision risk at wind turbines based on flight altitude of migratory waterbirds
title_sort sensitivity analysis of collision risk at wind turbines based on flight altitude of migratory waterbirds
topic flight altitude
geese
migration routes
ornithodolite
sensitivity map
swan
url https://doi.org/10.1002/2688-8319.12222
work_keys_str_mv AT taitokamata sensitivityanalysisofcollisionriskatwindturbinesbasedonflightaltitudeofmigratorywaterbirds
AT hitomisato sensitivityanalysisofcollisionriskatwindturbinesbasedonflightaltitudeofmigratorywaterbirds
AT harukamukai sensitivityanalysisofcollisionriskatwindturbinesbasedonflightaltitudeofmigratorywaterbirds
AT takahirosato sensitivityanalysisofcollisionriskatwindturbinesbasedonflightaltitudeofmigratorywaterbirds
AT shintaroyamada sensitivityanalysisofcollisionriskatwindturbinesbasedonflightaltitudeofmigratorywaterbirds
AT tsuneosekijima sensitivityanalysisofcollisionriskatwindturbinesbasedonflightaltitudeofmigratorywaterbirds