On ideal convergence Fibonacci difference sequence spaces

Abstract The Fibonacci sequence was firstly used in the theory of sequence spaces by Kara and Başarir (Casp. J. Math. Sci. 1(1):43–47, 2012). Afterward, Kara (J. Inequal. Appl. 2013(1):38, 2013) defined the Fibonacci difference matrix F̂ by using the Fibonacci sequence (fn) $(f_{n})$ for n∈{0,1,…} $...

Full description

Bibliographic Details
Main Authors: Vakeel A. Khan, Rami K. A. Rababah, Kamal M. A. S. Alshlool, Sameera A. A. Abdullah, Ayaz Ahmad
Format: Article
Language:English
Published: SpringerOpen 2018-05-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-018-1639-2
_version_ 1818270424694259712
author Vakeel A. Khan
Rami K. A. Rababah
Kamal M. A. S. Alshlool
Sameera A. A. Abdullah
Ayaz Ahmad
author_facet Vakeel A. Khan
Rami K. A. Rababah
Kamal M. A. S. Alshlool
Sameera A. A. Abdullah
Ayaz Ahmad
author_sort Vakeel A. Khan
collection DOAJ
description Abstract The Fibonacci sequence was firstly used in the theory of sequence spaces by Kara and Başarir (Casp. J. Math. Sci. 1(1):43–47, 2012). Afterward, Kara (J. Inequal. Appl. 2013(1):38, 2013) defined the Fibonacci difference matrix F̂ by using the Fibonacci sequence (fn) $(f_{n})$ for n∈{0,1,…} $n\in{\{0, 1, \ldots\}}$ and introduced new sequence spaces related to the matrix domain of F̂. In this paper, by using the Fibonacci difference matrix F̂ defined by the Fibonacci sequence and the notion of ideal convergence, we introduce the Fibonacci difference sequence spaces c0I(Fˆ) $c^{I}_{0}(\hat {F})$, cI(Fˆ) $c^{I}(\hat{F})$, and ℓ∞I(Fˆ) $\ell^{I}_{\infty}(\hat{F})$. Further, we study some inclusion relations concerning these spaces. In addition, we discuss some properties on these spaces such as monotonicity and solidity.
first_indexed 2024-12-12T21:10:04Z
format Article
id doaj.art-b941cb7de4cb476eaa85dfc689d45169
institution Directory Open Access Journal
issn 1687-1847
language English
last_indexed 2024-12-12T21:10:04Z
publishDate 2018-05-01
publisher SpringerOpen
record_format Article
series Advances in Difference Equations
spelling doaj.art-b941cb7de4cb476eaa85dfc689d451692022-12-22T00:11:55ZengSpringerOpenAdvances in Difference Equations1687-18472018-05-012018111410.1186/s13662-018-1639-2On ideal convergence Fibonacci difference sequence spacesVakeel A. Khan0Rami K. A. Rababah1Kamal M. A. S. Alshlool2Sameera A. A. Abdullah3Ayaz Ahmad4Department of Mathematics, Aligarh Muslim UniversityDepartment of Mathematics, Amman Arab UniversityDepartment of Mathematics, Aligarh Muslim UniversityDepartment of Mathematics, Aligarh Muslim UniversityDepartment of Mathematics, National Institute of TechnologyAbstract The Fibonacci sequence was firstly used in the theory of sequence spaces by Kara and Başarir (Casp. J. Math. Sci. 1(1):43–47, 2012). Afterward, Kara (J. Inequal. Appl. 2013(1):38, 2013) defined the Fibonacci difference matrix F̂ by using the Fibonacci sequence (fn) $(f_{n})$ for n∈{0,1,…} $n\in{\{0, 1, \ldots\}}$ and introduced new sequence spaces related to the matrix domain of F̂. In this paper, by using the Fibonacci difference matrix F̂ defined by the Fibonacci sequence and the notion of ideal convergence, we introduce the Fibonacci difference sequence spaces c0I(Fˆ) $c^{I}_{0}(\hat {F})$, cI(Fˆ) $c^{I}(\hat{F})$, and ℓ∞I(Fˆ) $\ell^{I}_{\infty}(\hat{F})$. Further, we study some inclusion relations concerning these spaces. In addition, we discuss some properties on these spaces such as monotonicity and solidity.http://link.springer.com/article/10.1186/s13662-018-1639-2Fibonacci difference matrixFibonacci I-convergenceFibonacci I-CauchyFibonacci I-boundedLipschitz function
spellingShingle Vakeel A. Khan
Rami K. A. Rababah
Kamal M. A. S. Alshlool
Sameera A. A. Abdullah
Ayaz Ahmad
On ideal convergence Fibonacci difference sequence spaces
Advances in Difference Equations
Fibonacci difference matrix
Fibonacci I-convergence
Fibonacci I-Cauchy
Fibonacci I-bounded
Lipschitz function
title On ideal convergence Fibonacci difference sequence spaces
title_full On ideal convergence Fibonacci difference sequence spaces
title_fullStr On ideal convergence Fibonacci difference sequence spaces
title_full_unstemmed On ideal convergence Fibonacci difference sequence spaces
title_short On ideal convergence Fibonacci difference sequence spaces
title_sort on ideal convergence fibonacci difference sequence spaces
topic Fibonacci difference matrix
Fibonacci I-convergence
Fibonacci I-Cauchy
Fibonacci I-bounded
Lipschitz function
url http://link.springer.com/article/10.1186/s13662-018-1639-2
work_keys_str_mv AT vakeelakhan onidealconvergencefibonaccidifferencesequencespaces
AT ramikarababah onidealconvergencefibonaccidifferencesequencespaces
AT kamalmasalshlool onidealconvergencefibonaccidifferencesequencespaces
AT sameeraaaabdullah onidealconvergencefibonaccidifferencesequencespaces
AT ayazahmad onidealconvergencefibonaccidifferencesequencespaces