SHS for Space Exploration

For over past years, interest of leading space agencies (NASA, JAXA, ESA, RSA, etc.) in SHS experiments under microgravity conditions has been increasingly growing. The first SHS experiments during a parabolic flight in Russia and aboard the MIR Space station gave promising results. Similar studies...

Full description

Bibliographic Details
Main Authors: A. E. Sytschev, S. G. Vadchenko, V. A. Shcherbakov, O. K. Kamynina, O. D. Boyarchenko, N. V. Sachkova
Format: Article
Language:English
Published: al-Farabi Kazakh National University 2013-05-01
Series:Eurasian Chemico-Technological Journal
Online Access:http://ect-journal.kz/index.php/ectj/article/view/260
Description
Summary:For over past years, interest of leading space agencies (NASA, JAXA, ESA, RSA, etc.) in SHS experiments under microgravity conditions has been increasingly growing. The first SHS experiments during a parabolic flight in Russia and aboard the MIR Space station gave promising results. Similar studies are now being carried out in various countries. The obtained data and assimilated experience have shown that SHS reactions can be used for (a) synthesis of high-porosity materials and regulation of structure formation in combustion products, (b) preparation of skeleton structures by combustion of particles suspended in vacuum, (c) generation of thermal energy, (d) generation of incandescent radiation, and (e) for in-space fabrication and in-situ repair works (welding, joining, cutting, coating, near-net-shape production, etc.). However, the results of the above studies (strongly scattered in the literature) still seem insufficient for elucidating the mechanism of combustion in. Indeed, the experiments were carried out by different researchers for a dozen of systems and for strongly different duration of microgravity (drop towers, parabolic flight of a plane, parabolic flight of a spacecraft, in space stations). No correlation has been made with the available data of SHS studies (oriented largely on practical implementation) in conditions of artificial gravity. In experiments, the combustion wave has enough time to spread over the sample while the structure formation, may not have. This implies that the process of wave propagation should always be identical, irrespective of the type of experimental technique and place of experiment. SHS experiments in space are attractive because (a) of low energy requirements, (b) processing cycle is short, (c) of process simplicity, (d) of versatility (wide range of suitable materials, and (e) the use of in-situ resources possible. To date, SHS experiments has already been performed aboard the International Space Station (ISS). Space technology has been developed for frontier exploration not only around the Earth orbit environment but also to the Moon, Mars, etc.
ISSN:1562-3920
2522-4867