Explore Luminance Attenuation and Optical Crosstalk of RGB Mini Light-Emitting Diode via Microscopic Hyperspectral Imaging

In this article, we experimentally and quantitatively investigate the luminance attenuation for red, green, and blue mini light-emitting diodes (LEDs), and the optical crosstalk in the RGB mini-LED array under different working currents via the microscopic hyperspectral imaging technique. The evalua...

Full description

Bibliographic Details
Main Authors: Lili Zheng, Ziquan Guo, Yijun Lu, Peixin Zeng, Shouqiang Lai, Guolong Chen, Yulin Gao, Lihong Zhu, Weijie Guo, Yi Lin, Zhong Chen
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Journal of the Electron Devices Society
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9905713/
Description
Summary:In this article, we experimentally and quantitatively investigate the luminance attenuation for red, green, and blue mini light-emitting diodes (LEDs), and the optical crosstalk in the RGB mini-LED array under different working currents via the microscopic hyperspectral imaging technique. The evaluation metrics of luminance attenuation for one single mini-LED subpixel and luminance influence among all three colored mini-LEDs are well defined to quantitatively describe the optical crosstalk among three mini-LED subpixels in the array. We also compare the size-dependent behaviors of luminance attenuation for blue and green mini-LEDs with an emission peak of about 465 nm and 529 nm, respectively. The minimum pixel pitch of blue and green mini-LEDs with different chip sizes is obtained through optical simulation based on LightTools software, so that the optical crosstalk can be reduced. Finally, we believe that this study could provide a useful guidance for selecting suitable working current conditions while driving the mini-LED display with suitable pixel size and pixel pitch to reduce both the optical and color crosstalk in the mini-LED display.
ISSN:2168-6734