Summary: | Abstract In this work, an active protective epoxy coating with weathering resistant, corrosion-warning, and self-healing properties was developed by incorporating tannic acid (TA) loaded mesoporous silica (MSN-TA) nanocontainers. The introduction of MSN-TA nanocontainers could alleviate the coating degradation via scavenging the radicals generated during UV irradiation. Compared with the blank coating, the coating containing 5 wt.% MSN-TA nanocontainers exhibited much less degradation in surface morphology, wettability and glossiness, and maintained a good barrier property after 384 h of accelerated weathering. Once the coating was damaged, the released TA could react with the Fe3+ ions to form a chelate that endowed the coating scratch with a visible black coloration, i.e. triggering a self-warning capability to indicate the initial onset of corrosion. In addition, the generated chelate could inhibit extensive corrosion propagation, offering a significant self-healing effect demonstrated by the stabilized impedance modulus values during 28 days of immersion in NaCl solution.
|