Dietary intake of tyrosine and phenylalanine, and p-cresyl sulfate plasma levels in non-dialyzed patients with chronic kidney disease

ABSTRACT Background: Patients with chronic kidney disease (CKD) present an imbalance of the gut microbiota composition, leading to increased production of uremic toxins like p-cresyl sulfate (PCS), product from bacterial fermentation of the amino acids tyrosine (Tyr) and phenylalanine (Phe) from t...

Full description

Bibliographic Details
Main Authors: Andressa Louzada Frauche Fernandes, Natalia A. Borges, Ana Paula Black, Juliana dos Anjos, Greicielle Santos da Silva, Lia S. Nakao, Denise Mafra
Format: Article
Language:English
Published: Sociedade Brasileira de Nefrologia
Series:Brazilian Journal of Nephrology
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-28002020005015201&lng=en&tlng=en
Description
Summary:ABSTRACT Background: Patients with chronic kidney disease (CKD) present an imbalance of the gut microbiota composition, leading to increased production of uremic toxins like p-cresyl sulfate (PCS), product from bacterial fermentation of the amino acids tyrosine (Tyr) and phenylalanine (Phe) from the diet. Thus, diet may be a determinant in the uremic toxins levels produced by the gut microbiota. The aim of this study was to evaluate the possible relationship between Tyr and Phe intake and PCS plasma levels in non-dialysis CKD patients. Methods: Twenty-seven non-dialysis CKD patients (stages 3 and 4) without previous nutritional intervention were evaluated. The dietary intake was evaluated using a 24-hour recall, 3-day food record and protein intake was also estimated by Protein Nitrogen Appearance (PNA). The plasma levels of PCS were measured using reverse phase high performance liquid chromatography. Results: The evaluated patients (GRF, 34.8 ± 12.4 mL/min, 54.2 ± 14.3 years, BMI, 29.3 ± 6.1 kg/m2) presented mean protein intake of 1.1 ± 0.5 g/kg/day), Tyr of 4.5 ± 2.4 g/day and Phe of 4.6 ± 2.5 g/day. PCS plasma levels (20.4 ± 15.5 mg/L) were elevated and positively associated with both, Tyr (r = 0.58, p = 0.002) and Phe intake (r = 0.53, p = 0.005), even after adjustments for eGFR and age. Conclusion: This study suggests that the diet is an important modulator of the uremic toxins plasma levels produced by the gut microbiota, in non-dialysis CKD patients.
ISSN:0101-2800
2175-8239