Development of a Dual Fuel ICE-Based Micro-CHP System and Experimental Evaluation of Its Performance at Light Loads Using Natural Gas as Primary Fuel

This study presents the implementation of a micro-generation system and its operation procedure, based on a dual fuel diesel engine using natural gas as the primary fuel and conventional diesel as the pilot fuel. On the other hand, the evaluation and validation results by experimental testing of a m...

Full description

Bibliographic Details
Main Authors: Edisson S. Castaño Mesa, Sebastián H. Quintana, Iván D. Bedoya
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/17/6281
_version_ 1797582621828448256
author Edisson S. Castaño Mesa
Sebastián H. Quintana
Iván D. Bedoya
author_facet Edisson S. Castaño Mesa
Sebastián H. Quintana
Iván D. Bedoya
author_sort Edisson S. Castaño Mesa
collection DOAJ
description This study presents the implementation of a micro-generation system and its operation procedure, based on a dual fuel diesel engine using natural gas as the primary fuel and conventional diesel as the pilot fuel. On the other hand, the evaluation and validation results by experimental testing of a model according to International Energy Agency—IEA—Annex 42, applied to dual fuel diesel micro-cogeneration system, are also presented. The control procedure for experimental operation depends of both inputs’ electric power generation demand and desired substitution level due a given natural gas availability. The heat recovery system of the micro-generation system uses a gas–liquid compact heat exchanger that was selected and implemented, where wasted heat from exhaust gases was transferred to liquid water as a cool fluid. Effective operation engine performance was determined by measurement of masses’ flow rate such as inlet air, diesel and natural gas, and also operation parameters such as electric power generation and recovered thermal power were measured. Electric power was generated by using an electric generator and then dissipated as heat by using an electric resistors bank with a dissipation capacity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>18</mn><mspace width="3.33333pt"></mspace><mi>kW</mi></mrow></semantics></math></inline-formula>. Natural gas fuel was supplied and measured by using a sonic nozzle flowmeter; in addition, natural gas composition was close to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>84.7</mn><mo>%</mo></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.74</mn><mo>%</mo></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>CO</mi><mn>2</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.58</mn><mo>%</mo></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="normal">N</mi><mn>2</mn></msub></semantics></math></inline-formula>, with the rest of them as higher hydrocarbons. The highest overall efficiency (electric efficiency plus heat recovery efficiency) was <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>52.3</mn><mo>%</mo></mrow></semantics></math></inline-formula> at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>14.4</mn></mrow></semantics></math></inline-formula> kW of electric power generation and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>%</mo></mrow></semantics></math></inline-formula> of substitution level. Several substitution levels were tested at each engine electric power generation, obtaining the maximum substitution level of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>61</mn><mo>%</mo></mrow></semantics></math></inline-formula> at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>17.7</mn></mrow></semantics></math></inline-formula> kW of electric power generation. Finally, model prediction results were closed to experimental results, both stationary and transient. The maximum error presented was close to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>20</mn><mo>%</mo></mrow></semantics></math></inline-formula> associated to thermal efficiency. However, errors for all other variables were lower than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>10</mn><mo>%</mo></mrow></semantics></math></inline-formula> for most of micro-cogeneration system operation points.
first_indexed 2024-03-10T23:23:59Z
format Article
id doaj.art-b97dfd80f6d94393ae37e20c3dbc8d34
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-10T23:23:59Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-b97dfd80f6d94393ae37e20c3dbc8d342023-11-19T08:05:46ZengMDPI AGEnergies1996-10732023-08-011617628110.3390/en16176281Development of a Dual Fuel ICE-Based Micro-CHP System and Experimental Evaluation of Its Performance at Light Loads Using Natural Gas as Primary FuelEdisson S. Castaño Mesa0Sebastián H. Quintana1Iván D. Bedoya2Grupo de Ciencia y Tecnología del Gas y Uso Racional de la Energía—GASURE, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 53-108, Medellín 050010, ColombiaGrupo de Ciencia y Tecnología del Gas y Uso Racional de la Energía—GASURE, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 53-108, Medellín 050010, ColombiaGrupo de Ciencia y Tecnología del Gas y Uso Racional de la Energía—GASURE, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 53-108, Medellín 050010, ColombiaThis study presents the implementation of a micro-generation system and its operation procedure, based on a dual fuel diesel engine using natural gas as the primary fuel and conventional diesel as the pilot fuel. On the other hand, the evaluation and validation results by experimental testing of a model according to International Energy Agency—IEA—Annex 42, applied to dual fuel diesel micro-cogeneration system, are also presented. The control procedure for experimental operation depends of both inputs’ electric power generation demand and desired substitution level due a given natural gas availability. The heat recovery system of the micro-generation system uses a gas–liquid compact heat exchanger that was selected and implemented, where wasted heat from exhaust gases was transferred to liquid water as a cool fluid. Effective operation engine performance was determined by measurement of masses’ flow rate such as inlet air, diesel and natural gas, and also operation parameters such as electric power generation and recovered thermal power were measured. Electric power was generated by using an electric generator and then dissipated as heat by using an electric resistors bank with a dissipation capacity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>18</mn><mspace width="3.33333pt"></mspace><mi>kW</mi></mrow></semantics></math></inline-formula>. Natural gas fuel was supplied and measured by using a sonic nozzle flowmeter; in addition, natural gas composition was close to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>84.7</mn><mo>%</mo></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.74</mn><mo>%</mo></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>CO</mi><mn>2</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.58</mn><mo>%</mo></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="normal">N</mi><mn>2</mn></msub></semantics></math></inline-formula>, with the rest of them as higher hydrocarbons. The highest overall efficiency (electric efficiency plus heat recovery efficiency) was <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>52.3</mn><mo>%</mo></mrow></semantics></math></inline-formula> at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>14.4</mn></mrow></semantics></math></inline-formula> kW of electric power generation and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>%</mo></mrow></semantics></math></inline-formula> of substitution level. Several substitution levels were tested at each engine electric power generation, obtaining the maximum substitution level of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>61</mn><mo>%</mo></mrow></semantics></math></inline-formula> at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>17.7</mn></mrow></semantics></math></inline-formula> kW of electric power generation. Finally, model prediction results were closed to experimental results, both stationary and transient. The maximum error presented was close to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>20</mn><mo>%</mo></mrow></semantics></math></inline-formula> associated to thermal efficiency. However, errors for all other variables were lower than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>10</mn><mo>%</mo></mrow></semantics></math></inline-formula> for most of micro-cogeneration system operation points.https://www.mdpi.com/1996-1073/16/17/6281micro-cogenerationheat recoverydual fuel enginesubstitution levelnatural gasefficiency
spellingShingle Edisson S. Castaño Mesa
Sebastián H. Quintana
Iván D. Bedoya
Development of a Dual Fuel ICE-Based Micro-CHP System and Experimental Evaluation of Its Performance at Light Loads Using Natural Gas as Primary Fuel
Energies
micro-cogeneration
heat recovery
dual fuel engine
substitution level
natural gas
efficiency
title Development of a Dual Fuel ICE-Based Micro-CHP System and Experimental Evaluation of Its Performance at Light Loads Using Natural Gas as Primary Fuel
title_full Development of a Dual Fuel ICE-Based Micro-CHP System and Experimental Evaluation of Its Performance at Light Loads Using Natural Gas as Primary Fuel
title_fullStr Development of a Dual Fuel ICE-Based Micro-CHP System and Experimental Evaluation of Its Performance at Light Loads Using Natural Gas as Primary Fuel
title_full_unstemmed Development of a Dual Fuel ICE-Based Micro-CHP System and Experimental Evaluation of Its Performance at Light Loads Using Natural Gas as Primary Fuel
title_short Development of a Dual Fuel ICE-Based Micro-CHP System and Experimental Evaluation of Its Performance at Light Loads Using Natural Gas as Primary Fuel
title_sort development of a dual fuel ice based micro chp system and experimental evaluation of its performance at light loads using natural gas as primary fuel
topic micro-cogeneration
heat recovery
dual fuel engine
substitution level
natural gas
efficiency
url https://www.mdpi.com/1996-1073/16/17/6281
work_keys_str_mv AT edissonscastanomesa developmentofadualfuelicebasedmicrochpsystemandexperimentalevaluationofitsperformanceatlightloadsusingnaturalgasasprimaryfuel
AT sebastianhquintana developmentofadualfuelicebasedmicrochpsystemandexperimentalevaluationofitsperformanceatlightloadsusingnaturalgasasprimaryfuel
AT ivandbedoya developmentofadualfuelicebasedmicrochpsystemandexperimentalevaluationofitsperformanceatlightloadsusingnaturalgasasprimaryfuel