A Novel Low-Area Point Multiplication Architecture for Elliptic-Curve Cryptography

This paper presents a Point Multiplication (PM) architecture of Elliptic-Curve Cryptography (ECC) over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>...

Full description

Bibliographic Details
Main Authors: Muhammad Rashid, Mohammad Mazyad Hazzazi, Sikandar Zulqarnain Khan, Adel R. Alharbi, Asher Sajid, Amer Aljaedi
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/21/2698
_version_ 1797512667817050112
author Muhammad Rashid
Mohammad Mazyad Hazzazi
Sikandar Zulqarnain Khan
Adel R. Alharbi
Asher Sajid
Amer Aljaedi
author_facet Muhammad Rashid
Mohammad Mazyad Hazzazi
Sikandar Zulqarnain Khan
Adel R. Alharbi
Asher Sajid
Amer Aljaedi
author_sort Muhammad Rashid
collection DOAJ
description This paper presents a Point Multiplication (PM) architecture of Elliptic-Curve Cryptography (ECC) over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>163</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> with a focus on the optimization of hardware resources and latency at the same time. The hardware resources are reduced with the use of a bit-serial (traditional schoolbook) multiplication method. Similarly, the latency is optimized with the reduction in a critical path using pipeline registers. To cope with the pipelining, we propose to reschedule point addition and double instructions, required for the computation of a PM operation in ECC. Subsequently, the proposed architecture over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>163</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> is modeled in Verilog Hardware Description Language (HDL) using Vivado Design Suite. To provide a fair performance evaluation, we synthesize our design on various FPGA (field-programmable gate array) devices. These FPGA devices are Virtex-4, Virtex-5, Virtex-6, Virtex-7, Spartan-7, Artix-7, and Kintex-7. The lowest area (433 FPGA slices) is achieved on Spartan-7. The highest speed is realized on Virtex-7, where our design achieves 391 MHz clock frequency and requires 416 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>s for one PM computation (latency). For power, the lowest values are achieved on the Artix-7 (56 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>W) and Kintex-7 (61 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>W) devices. A ratio of throughput over area value of 4.89 is reached for Virtex-7. Our design outperforms most recent state-of-the-art solutions (in terms of area) with an overhead of latency.
first_indexed 2024-03-10T06:04:55Z
format Article
id doaj.art-b97e7b65edd54319b13a8d39866ac902
institution Directory Open Access Journal
issn 2079-9292
language English
last_indexed 2024-03-10T06:04:55Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Electronics
spelling doaj.art-b97e7b65edd54319b13a8d39866ac9022023-11-22T20:39:31ZengMDPI AGElectronics2079-92922021-11-011021269810.3390/electronics10212698A Novel Low-Area Point Multiplication Architecture for Elliptic-Curve CryptographyMuhammad Rashid0Mohammad Mazyad Hazzazi1Sikandar Zulqarnain Khan2Adel R. Alharbi3Asher Sajid4Amer Aljaedi5Department of Computer Engineering, Umm Al-Qura University, Makkah 21955, Saudi ArabiaDepartment of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi ArabiaDepartment of Aeronautical Engineering, Estonian Aviation Academy, 61707 Tartu, EstoniaCollege of Computing and Information Technology, University of Tabuk, Tabuk 71491, Saudi ArabiaDepartment of Electrical Engineering, Bahria University, Islamabad 44000, PakistanCollege of Computing and Information Technology, University of Tabuk, Tabuk 71491, Saudi ArabiaThis paper presents a Point Multiplication (PM) architecture of Elliptic-Curve Cryptography (ECC) over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>163</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> with a focus on the optimization of hardware resources and latency at the same time. The hardware resources are reduced with the use of a bit-serial (traditional schoolbook) multiplication method. Similarly, the latency is optimized with the reduction in a critical path using pipeline registers. To cope with the pipelining, we propose to reschedule point addition and double instructions, required for the computation of a PM operation in ECC. Subsequently, the proposed architecture over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>163</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> is modeled in Verilog Hardware Description Language (HDL) using Vivado Design Suite. To provide a fair performance evaluation, we synthesize our design on various FPGA (field-programmable gate array) devices. These FPGA devices are Virtex-4, Virtex-5, Virtex-6, Virtex-7, Spartan-7, Artix-7, and Kintex-7. The lowest area (433 FPGA slices) is achieved on Spartan-7. The highest speed is realized on Virtex-7, where our design achieves 391 MHz clock frequency and requires 416 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>s for one PM computation (latency). For power, the lowest values are achieved on the Artix-7 (56 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>W) and Kintex-7 (61 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>W) devices. A ratio of throughput over area value of 4.89 is reached for Virtex-7. Our design outperforms most recent state-of-the-art solutions (in terms of area) with an overhead of latency.https://www.mdpi.com/2079-9292/10/21/2698elliptic-curve cryptographypoint multiplicationhardware architectureFPGA
spellingShingle Muhammad Rashid
Mohammad Mazyad Hazzazi
Sikandar Zulqarnain Khan
Adel R. Alharbi
Asher Sajid
Amer Aljaedi
A Novel Low-Area Point Multiplication Architecture for Elliptic-Curve Cryptography
Electronics
elliptic-curve cryptography
point multiplication
hardware architecture
FPGA
title A Novel Low-Area Point Multiplication Architecture for Elliptic-Curve Cryptography
title_full A Novel Low-Area Point Multiplication Architecture for Elliptic-Curve Cryptography
title_fullStr A Novel Low-Area Point Multiplication Architecture for Elliptic-Curve Cryptography
title_full_unstemmed A Novel Low-Area Point Multiplication Architecture for Elliptic-Curve Cryptography
title_short A Novel Low-Area Point Multiplication Architecture for Elliptic-Curve Cryptography
title_sort novel low area point multiplication architecture for elliptic curve cryptography
topic elliptic-curve cryptography
point multiplication
hardware architecture
FPGA
url https://www.mdpi.com/2079-9292/10/21/2698
work_keys_str_mv AT muhammadrashid anovellowareapointmultiplicationarchitectureforellipticcurvecryptography
AT mohammadmazyadhazzazi anovellowareapointmultiplicationarchitectureforellipticcurvecryptography
AT sikandarzulqarnainkhan anovellowareapointmultiplicationarchitectureforellipticcurvecryptography
AT adelralharbi anovellowareapointmultiplicationarchitectureforellipticcurvecryptography
AT ashersajid anovellowareapointmultiplicationarchitectureforellipticcurvecryptography
AT ameraljaedi anovellowareapointmultiplicationarchitectureforellipticcurvecryptography
AT muhammadrashid novellowareapointmultiplicationarchitectureforellipticcurvecryptography
AT mohammadmazyadhazzazi novellowareapointmultiplicationarchitectureforellipticcurvecryptography
AT sikandarzulqarnainkhan novellowareapointmultiplicationarchitectureforellipticcurvecryptography
AT adelralharbi novellowareapointmultiplicationarchitectureforellipticcurvecryptography
AT ashersajid novellowareapointmultiplicationarchitectureforellipticcurvecryptography
AT ameraljaedi novellowareapointmultiplicationarchitectureforellipticcurvecryptography