Positive solutions for singular semi-positone Neumann boundary-value problems
In this paper, we study the singular semi-positone Neumann bound-ary-value problem $$displaylines{ -u''+m^2u=lambda f(t,u)+g(t,u),quad 0 less than t less than 1,cr u'(0)=u'(1)=0, }$$ where $m$ is a positive constant. Under some suitable assumptions on the functions $f$ and $g$,...
Hoofdauteurs: | , |
---|---|
Formaat: | Artikel |
Taal: | English |
Gepubliceerd in: |
Texas State University
2004-11-01
|
Reeks: | Electronic Journal of Differential Equations |
Onderwerpen: | |
Online toegang: | http://ejde.math.txstate.edu/Volumes/2004/133/abstr.thml |
Samenvatting: | In this paper, we study the singular semi-positone Neumann bound-ary-value problem $$displaylines{ -u''+m^2u=lambda f(t,u)+g(t,u),quad 0 less than t less than 1,cr u'(0)=u'(1)=0, }$$ where $m$ is a positive constant. Under some suitable assumptions on the functions $f$ and $g$, for sufficiently small $lambda$, we prove the existence of a positive solution. Our approach is based on the Krasnasel'skii fixed point theorem in cones. |
---|---|
ISSN: | 1072-6691 |