A Bayesian Inference Framework for Gamma-ray Burst Afterglow Properties

In the field of multi-messenger astronomy, Bayesian inference is commonly adopted to compare the compatibility of models given the observed data. However, to describe a physical system like neutron star mergers and their associated gamma-ray burst (GRB) events, usually more than ten physical paramet...

Full description

Bibliographic Details
Main Authors: En-Tzu Lin, Fergus Hayes, Gavin P. Lamb, Ik Siong Heng, Albert K. H. Kong, Michael J. Williams, Surojit Saha, John Veitch
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/7/9/349
_version_ 1827681126498435072
author En-Tzu Lin
Fergus Hayes
Gavin P. Lamb
Ik Siong Heng
Albert K. H. Kong
Michael J. Williams
Surojit Saha
John Veitch
author_facet En-Tzu Lin
Fergus Hayes
Gavin P. Lamb
Ik Siong Heng
Albert K. H. Kong
Michael J. Williams
Surojit Saha
John Veitch
author_sort En-Tzu Lin
collection DOAJ
description In the field of multi-messenger astronomy, Bayesian inference is commonly adopted to compare the compatibility of models given the observed data. However, to describe a physical system like neutron star mergers and their associated gamma-ray burst (GRB) events, usually more than ten physical parameters are incorporated in the model. With such a complex model, likelihood evaluation for each Monte Carlo sampling point becomes a massive task and requires a significant amount of computational power. In this work, we perform quick parameter estimation on simulated GRB X-ray light curves using an interpolated physical GRB model. This is achieved by generating a grid of GRB afterglow light curves across the parameter space and replacing the likelihood with a simple interpolation function in the high-dimensional grid that stores all light curves. This framework, compared to the original method, leads to a ∼90× speedup per likelihood estimation. It will allow us to explore different jet models and enable fast model comparison in the future.
first_indexed 2024-03-10T07:09:56Z
format Article
id doaj.art-b98f3982b10c4c8da421e7dfe5c5a8e7
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-03-10T07:09:56Z
publishDate 2021-09-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-b98f3982b10c4c8da421e7dfe5c5a8e72023-11-22T15:33:15ZengMDPI AGUniverse2218-19972021-09-017934910.3390/universe7090349A Bayesian Inference Framework for Gamma-ray Burst Afterglow PropertiesEn-Tzu Lin0Fergus Hayes1Gavin P. Lamb2Ik Siong Heng3Albert K. H. Kong4Michael J. Williams5Surojit Saha6John Veitch7Institute of Astronomy, National Tsing Hua University, Hsinchu 300044, TaiwanSUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UKSchool of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UKSUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UKInstitute of Astronomy, National Tsing Hua University, Hsinchu 300044, TaiwanSUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UKInstitute of Astronomy, National Tsing Hua University, Hsinchu 300044, TaiwanSUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UKIn the field of multi-messenger astronomy, Bayesian inference is commonly adopted to compare the compatibility of models given the observed data. However, to describe a physical system like neutron star mergers and their associated gamma-ray burst (GRB) events, usually more than ten physical parameters are incorporated in the model. With such a complex model, likelihood evaluation for each Monte Carlo sampling point becomes a massive task and requires a significant amount of computational power. In this work, we perform quick parameter estimation on simulated GRB X-ray light curves using an interpolated physical GRB model. This is achieved by generating a grid of GRB afterglow light curves across the parameter space and replacing the likelihood with a simple interpolation function in the high-dimensional grid that stores all light curves. This framework, compared to the original method, leads to a ∼90× speedup per likelihood estimation. It will allow us to explore different jet models and enable fast model comparison in the future.https://www.mdpi.com/2218-1997/7/9/349Bayesian inferencemulti-messenger astronomyGRB afterglows
spellingShingle En-Tzu Lin
Fergus Hayes
Gavin P. Lamb
Ik Siong Heng
Albert K. H. Kong
Michael J. Williams
Surojit Saha
John Veitch
A Bayesian Inference Framework for Gamma-ray Burst Afterglow Properties
Universe
Bayesian inference
multi-messenger astronomy
GRB afterglows
title A Bayesian Inference Framework for Gamma-ray Burst Afterglow Properties
title_full A Bayesian Inference Framework for Gamma-ray Burst Afterglow Properties
title_fullStr A Bayesian Inference Framework for Gamma-ray Burst Afterglow Properties
title_full_unstemmed A Bayesian Inference Framework for Gamma-ray Burst Afterglow Properties
title_short A Bayesian Inference Framework for Gamma-ray Burst Afterglow Properties
title_sort bayesian inference framework for gamma ray burst afterglow properties
topic Bayesian inference
multi-messenger astronomy
GRB afterglows
url https://www.mdpi.com/2218-1997/7/9/349
work_keys_str_mv AT entzulin abayesianinferenceframeworkforgammarayburstafterglowproperties
AT fergushayes abayesianinferenceframeworkforgammarayburstafterglowproperties
AT gavinplamb abayesianinferenceframeworkforgammarayburstafterglowproperties
AT iksiongheng abayesianinferenceframeworkforgammarayburstafterglowproperties
AT albertkhkong abayesianinferenceframeworkforgammarayburstafterglowproperties
AT michaeljwilliams abayesianinferenceframeworkforgammarayburstafterglowproperties
AT surojitsaha abayesianinferenceframeworkforgammarayburstafterglowproperties
AT johnveitch abayesianinferenceframeworkforgammarayburstafterglowproperties
AT entzulin bayesianinferenceframeworkforgammarayburstafterglowproperties
AT fergushayes bayesianinferenceframeworkforgammarayburstafterglowproperties
AT gavinplamb bayesianinferenceframeworkforgammarayburstafterglowproperties
AT iksiongheng bayesianinferenceframeworkforgammarayburstafterglowproperties
AT albertkhkong bayesianinferenceframeworkforgammarayburstafterglowproperties
AT michaeljwilliams bayesianinferenceframeworkforgammarayburstafterglowproperties
AT surojitsaha bayesianinferenceframeworkforgammarayburstafterglowproperties
AT johnveitch bayesianinferenceframeworkforgammarayburstafterglowproperties