Radial solutions for a nonlocal boundary value problem

<p/> <p>We consider the boundary value problem for the nonlinear Poisson equation with a nonlocal term <inline-formula><graphic file="1687-2770-2006-32950-i1.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2006-32950-i2.gif"...

Full description

Bibliographic Details
Main Authors: Sanchez Lu&#237;s, Engui&#231;a Ricardo
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Boundary Value Problems
Online Access:http://www.boundaryvalueproblems.com/content/2006/32950
_version_ 1818174572579520512
author Sanchez Lu&#237;s
Engui&#231;a Ricardo
author_facet Sanchez Lu&#237;s
Engui&#231;a Ricardo
author_sort Sanchez Lu&#237;s
collection DOAJ
description <p/> <p>We consider the boundary value problem for the nonlinear Poisson equation with a nonlocal term <inline-formula><graphic file="1687-2770-2006-32950-i1.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2006-32950-i2.gif"/></inline-formula>. We prove the existence of a positive radial solution when <inline-formula><graphic file="1687-2770-2006-32950-i3.gif"/></inline-formula> grows linearly in <inline-formula><graphic file="1687-2770-2006-32950-i4.gif"/></inline-formula>, using Krasnoselskii&#233;s fixed point theorem together with eigenvalue theory. In presence of upper and lower solutions, we consider monotone approximation to solutions.</p>
first_indexed 2024-12-11T19:46:32Z
format Article
id doaj.art-b999da1f7d9d4f728e78df7c02699ae6
institution Directory Open Access Journal
issn 1687-2762
1687-2770
language English
last_indexed 2024-12-11T19:46:32Z
publishDate 2006-01-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-b999da1f7d9d4f728e78df7c02699ae62022-12-22T00:52:53ZengSpringerOpenBoundary Value Problems1687-27621687-27702006-01-012006132950Radial solutions for a nonlocal boundary value problemSanchez Lu&#237;sEngui&#231;a Ricardo<p/> <p>We consider the boundary value problem for the nonlinear Poisson equation with a nonlocal term <inline-formula><graphic file="1687-2770-2006-32950-i1.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2006-32950-i2.gif"/></inline-formula>. We prove the existence of a positive radial solution when <inline-formula><graphic file="1687-2770-2006-32950-i3.gif"/></inline-formula> grows linearly in <inline-formula><graphic file="1687-2770-2006-32950-i4.gif"/></inline-formula>, using Krasnoselskii&#233;s fixed point theorem together with eigenvalue theory. In presence of upper and lower solutions, we consider monotone approximation to solutions.</p>http://www.boundaryvalueproblems.com/content/2006/32950
spellingShingle Sanchez Lu&#237;s
Engui&#231;a Ricardo
Radial solutions for a nonlocal boundary value problem
Boundary Value Problems
title Radial solutions for a nonlocal boundary value problem
title_full Radial solutions for a nonlocal boundary value problem
title_fullStr Radial solutions for a nonlocal boundary value problem
title_full_unstemmed Radial solutions for a nonlocal boundary value problem
title_short Radial solutions for a nonlocal boundary value problem
title_sort radial solutions for a nonlocal boundary value problem
url http://www.boundaryvalueproblems.com/content/2006/32950
work_keys_str_mv AT sanchezlu237s radialsolutionsforanonlocalboundaryvalueproblem
AT engui231aricardo radialsolutionsforanonlocalboundaryvalueproblem