Radial solutions for a nonlocal boundary value problem
<p/> <p>We consider the boundary value problem for the nonlinear Poisson equation with a nonlocal term <inline-formula><graphic file="1687-2770-2006-32950-i1.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2006-32950-i2.gif"...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2006-01-01
|
Series: | Boundary Value Problems |
Online Access: | http://www.boundaryvalueproblems.com/content/2006/32950 |
_version_ | 1818174572579520512 |
---|---|
author | Sanchez Luís Enguiça Ricardo |
author_facet | Sanchez Luís Enguiça Ricardo |
author_sort | Sanchez Luís |
collection | DOAJ |
description | <p/> <p>We consider the boundary value problem for the nonlinear Poisson equation with a nonlocal term <inline-formula><graphic file="1687-2770-2006-32950-i1.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2006-32950-i2.gif"/></inline-formula>. We prove the existence of a positive radial solution when <inline-formula><graphic file="1687-2770-2006-32950-i3.gif"/></inline-formula> grows linearly in <inline-formula><graphic file="1687-2770-2006-32950-i4.gif"/></inline-formula>, using Krasnoselskiiés fixed point theorem together with eigenvalue theory. In presence of upper and lower solutions, we consider monotone approximation to solutions.</p> |
first_indexed | 2024-12-11T19:46:32Z |
format | Article |
id | doaj.art-b999da1f7d9d4f728e78df7c02699ae6 |
institution | Directory Open Access Journal |
issn | 1687-2762 1687-2770 |
language | English |
last_indexed | 2024-12-11T19:46:32Z |
publishDate | 2006-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | Boundary Value Problems |
spelling | doaj.art-b999da1f7d9d4f728e78df7c02699ae62022-12-22T00:52:53ZengSpringerOpenBoundary Value Problems1687-27621687-27702006-01-012006132950Radial solutions for a nonlocal boundary value problemSanchez LuísEnguiça Ricardo<p/> <p>We consider the boundary value problem for the nonlinear Poisson equation with a nonlocal term <inline-formula><graphic file="1687-2770-2006-32950-i1.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2006-32950-i2.gif"/></inline-formula>. We prove the existence of a positive radial solution when <inline-formula><graphic file="1687-2770-2006-32950-i3.gif"/></inline-formula> grows linearly in <inline-formula><graphic file="1687-2770-2006-32950-i4.gif"/></inline-formula>, using Krasnoselskiiés fixed point theorem together with eigenvalue theory. In presence of upper and lower solutions, we consider monotone approximation to solutions.</p>http://www.boundaryvalueproblems.com/content/2006/32950 |
spellingShingle | Sanchez Luís Enguiça Ricardo Radial solutions for a nonlocal boundary value problem Boundary Value Problems |
title | Radial solutions for a nonlocal boundary value problem |
title_full | Radial solutions for a nonlocal boundary value problem |
title_fullStr | Radial solutions for a nonlocal boundary value problem |
title_full_unstemmed | Radial solutions for a nonlocal boundary value problem |
title_short | Radial solutions for a nonlocal boundary value problem |
title_sort | radial solutions for a nonlocal boundary value problem |
url | http://www.boundaryvalueproblems.com/content/2006/32950 |
work_keys_str_mv | AT sanchezlu237s radialsolutionsforanonlocalboundaryvalueproblem AT engui231aricardo radialsolutionsforanonlocalboundaryvalueproblem |