A fractional-order Duhem model of rate-dependent hysteresis for piezoelectric actuators
In this paper, a Fractional-Order Duhem Model (FODuhem) is proposed to describe the rate-dependent hysteresis nonlinearity of piezoelectric actuators (PEAs). A fractional-order operator is introduced on the basis of the traditional Duhem model, and the unique nonlocal memory property of the fraction...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2022-11-01
|
Series: | Measurement + Control |
Online Access: | https://doi.org/10.1177/00202940221092140 |
_version_ | 1797985123160817664 |
---|---|
author | Liu Yang Ruobing Zhong Dongjie Li Zhan Li |
author_facet | Liu Yang Ruobing Zhong Dongjie Li Zhan Li |
author_sort | Liu Yang |
collection | DOAJ |
description | In this paper, a Fractional-Order Duhem Model (FODuhem) is proposed to describe the rate-dependent hysteresis nonlinearity of piezoelectric actuators (PEAs). A fractional-order operator is introduced on the basis of the traditional Duhem model, and the unique nonlocal memory property of the fractional-order operator makes it possible to describe the memory effect inherent in hysteresis. A differential evolutionary algorithm was used to identify the parameters of the FODuhem model. Finally, experimental results clearly show that the FODuhem model can better describe the rate-dependent hysteresis behavior of piezoelectric actuators compared with the conventional Duhem model. |
first_indexed | 2024-04-11T07:12:34Z |
format | Article |
id | doaj.art-b99d537befe64e5e88a7185fedaba3cd |
institution | Directory Open Access Journal |
issn | 0020-2940 |
language | English |
last_indexed | 2024-04-11T07:12:34Z |
publishDate | 2022-11-01 |
publisher | SAGE Publishing |
record_format | Article |
series | Measurement + Control |
spelling | doaj.art-b99d537befe64e5e88a7185fedaba3cd2022-12-22T04:38:07ZengSAGE PublishingMeasurement + Control0020-29402022-11-015510.1177/00202940221092140A fractional-order Duhem model of rate-dependent hysteresis for piezoelectric actuatorsLiu Yang0Ruobing Zhong1Dongjie Li2Zhan Li3School of Automation, Harbin University of Science and Technology, Harbin, ChinaSchool of Automation, Harbin University of Science and Technology, Harbin, ChinaKey Laboratory of Complex Intelligent Systems and Integration in Heilongjiang Province, Harbin, ChinaSchool of Aeronautics, Harbin Institute of Technology, Harbin, ChinaIn this paper, a Fractional-Order Duhem Model (FODuhem) is proposed to describe the rate-dependent hysteresis nonlinearity of piezoelectric actuators (PEAs). A fractional-order operator is introduced on the basis of the traditional Duhem model, and the unique nonlocal memory property of the fractional-order operator makes it possible to describe the memory effect inherent in hysteresis. A differential evolutionary algorithm was used to identify the parameters of the FODuhem model. Finally, experimental results clearly show that the FODuhem model can better describe the rate-dependent hysteresis behavior of piezoelectric actuators compared with the conventional Duhem model.https://doi.org/10.1177/00202940221092140 |
spellingShingle | Liu Yang Ruobing Zhong Dongjie Li Zhan Li A fractional-order Duhem model of rate-dependent hysteresis for piezoelectric actuators Measurement + Control |
title | A fractional-order Duhem model of rate-dependent hysteresis for piezoelectric actuators |
title_full | A fractional-order Duhem model of rate-dependent hysteresis for piezoelectric actuators |
title_fullStr | A fractional-order Duhem model of rate-dependent hysteresis for piezoelectric actuators |
title_full_unstemmed | A fractional-order Duhem model of rate-dependent hysteresis for piezoelectric actuators |
title_short | A fractional-order Duhem model of rate-dependent hysteresis for piezoelectric actuators |
title_sort | fractional order duhem model of rate dependent hysteresis for piezoelectric actuators |
url | https://doi.org/10.1177/00202940221092140 |
work_keys_str_mv | AT liuyang afractionalorderduhemmodelofratedependenthysteresisforpiezoelectricactuators AT ruobingzhong afractionalorderduhemmodelofratedependenthysteresisforpiezoelectricactuators AT dongjieli afractionalorderduhemmodelofratedependenthysteresisforpiezoelectricactuators AT zhanli afractionalorderduhemmodelofratedependenthysteresisforpiezoelectricactuators AT liuyang fractionalorderduhemmodelofratedependenthysteresisforpiezoelectricactuators AT ruobingzhong fractionalorderduhemmodelofratedependenthysteresisforpiezoelectricactuators AT dongjieli fractionalorderduhemmodelofratedependenthysteresisforpiezoelectricactuators AT zhanli fractionalorderduhemmodelofratedependenthysteresisforpiezoelectricactuators |